2020年2月5日 星期三

國立臺灣大學九十六學年度研究所碩士班入學考試試題:微積分甲

請標明題號,依序作答。

計算證明題
  1. 設 $\displaystyle f\left(x\right)=\int_1^xe^{3t}\sqrt{9t^4+1}dt$,$g\left(x\right)=x^ne^{3x}$,且 $\displaystyle\lim_{x\to\infty}\left[\frac{f'\left(x\right)}{g'\left(x\right)}\right]=1$。求 $n$ 之值。
  2. 訣竅使用微積分基本定理與微分的乘法公式求導後計算極限即可。
    解法使用微積分基本定理可得

    $f'\left(x\right)=e^{3x}\sqrt{9x^2+1}$

    而使用乘法的微分公式則有

    $g'\left(x\right)=nx^{n-1}e^{3x}+3x^ne^{3x}$

    因此給定的極限式可表達為

    $\displaystyle1=\lim_{x\to\infty}\left[\frac{f'\left(x\right)}{g'\left(x\right)}\right]=\lim_{x\to\infty}\frac{e^{3x}\sqrt{9x^2+1}}{nx^{n-1}e^{3x}+3x^ne^{3x}}=\lim_{x\to\infty}\frac{\sqrt{9x^2+1}}{nx^{n-1}+3x^n}=\lim_{x\to\infty}\frac{\displaystyle\sqrt{9+\frac1{x^2}}}{3x^{n-1}+nx^{n-2}}$

    因此根據極限的四則運算結果可知

    $\displaystyle\lim_{x\to\infty}\left(3x^{n-1}+nx^{n-2}\right)=\lim_{x\to\infty}\frac{3x^{n-1}+nx^{n-2}}{\displaystyle\sqrt{9+\frac1{x^2}}}\cdot\sqrt{9+\frac1{x^2}}=1\cdot3=3$

    容易看出當 $n>1$ 時應有 $\displaystyle\lim_{x\to\infty}\left(3x^{n-1}+nx^{n-2}\right)=\infty$;而當 $n<1$ 時應有 $\displaystyle\lim_{x\to\infty}\left(3x^{n-1}+nx^{n-2}\right)=0$,故皆不合。而取 $n=1$ 時能檢驗符合題意。

    1. $\displaystyle\lim_{x\to0^+}\left(\cot x-\frac1x\right)$。
    2. 再用級數求 $\displaystyle\lim_{x\to0^+}\left(\cot x-\frac1x\right)\left(\cot x+\frac1x\right)$。
  3. 訣竅通分整理後使用羅必達法則即可;亦可在此使用泰勒級數觀察之,隨後應用至第二小題中。
    解法
    1. 【方法一】 通分後使用羅必達法則計算如下

      $\displaystyle\lim_{x\to0^+}\left(\cot x-\frac1x\right)=\lim_{x\to0^+}\frac{x\cos x-\sin x}{x\sin x}=\lim_{x\to0^+}\frac{-x\sin x}{\sin x+x\cos x}=\lim_{x\to0^+}\frac{-\sin x-x\cos x}{2\cos x-x\sin x}=0$

      【方法二】 留意到 $\displaystyle\cot x=\frac1{\tan x}$,根據正切函數的泰勒展開式有

      $\displaystyle\cot x=\frac1{\displaystyle x+\frac{x^3}3+\cdots}=\frac1x\cdot\frac1{\displaystyle1+\frac{x^2}3+\cdots}=\frac1x\cdot\left(1-\frac{x^2}3+\cdots\right)=\frac1x-\frac{x}3+\cdots$

      故可知

      $\displaystyle\lim_{x\to0^+}\left(\cot x-\frac1x\right)=\lim_{x\to0^+}\left(-\frac{x}3+\cdots\right)=0$

    2. 沿用前述的辦法已知

      $\displaystyle\cot x=\frac1x-\frac{x}3+\cdots$

      如此所給定的極限可表達為

      $\displaystyle\lim_{x\to0^+}\left(\cot x-\frac1x\right)\left(\cot x+\frac1x\right)=\lim_{x\to0^+}\left[\left(-\frac{x}3+\cdots\right)\left(\frac1x+\cdots\right)\right]=\lim_{x\to0^+}\left(-\frac13+\cdots\right)=-\frac13$


  4. 設 $f\left(x\right)=\ln x+\tan^{-1}x$,$g\left(x\right)$ 為其反函數,求 $\displaystyle g'\left(\frac\pi4\right)$ 和 $\displaystyle g''\left(\frac\pi4\right)$ 之值。
  5. 訣竅使用反函數的定義與連鎖律求解。
    解法

    由反函數的定義有 $g\left(f\left(x\right)\right)=x$。使用連鎖律可得

    $g'\left(f\left(x\right)\right)f'\left(x\right)=1$

    可以觀察到 $f\left(1\right)=\frac\pi4$,故取 $x=1$ 可得

    $\displaystyle g'\left(\frac\pi4\right)=\frac1{f'\left(1\right)}$

    再者,我們有 $\displaystyle f'\left(x\right)=\frac1x+\frac1{1+x^2}$,因此 $\displaystyle f'\left(1\right)=\frac32$,從而所求為 $\displaystyle g'\left(\frac\pi4\right)=\frac23$。

    進一步的,我們對 $g'\left(f\left(x\right)\right)f'\left(x\right)=1$ 再求導一次可得

    $g''\left(f\left(x\right)\right)\left[f'\left(x\right)\right]^2+g'\left(f\left(x\right)\right)f''\left(x\right)=0$

    此時也有 $\displaystyle f''\left(x\right)=-\frac1{x^2}-\frac{2x}{\left(1+x^2\right)^2}$。故取 $x=1$ 可得

    $\displaystyle g''\left(\frac\pi4\right)\cdot\left(\frac32\right)^2+\frac23\cdot\left(-\frac32\right)=0$

    因此所求為 $\displaystyle g''\left(\frac\pi4\right)=\frac49$。


  6. $\displaystyle f\left(x\right)=\frac{x-\sin x}{x^3}$,求 $f^{\left(6\right)}\left(0\right)$ 之值。
  7. 訣竅使用泰勒展開式來求高階導數值。
    解法使用正弦函數的泰勒展開式可知

    $\displaystyle f\left(x\right)=\frac{x-\sin x}{x^3}=\frac{\displaystyle x-\left(x-\frac{x^3}6+\frac{x^5}{120}-\frac{x^7}{5040}+\frac{x^9}{362880}-\cdots\right)}{x^3}=\frac16-\frac{x^2}{120}+\frac{x^4}{5040}-\frac{x^6}{362880}+\cdots$

    因此所求為 $\displaystyle f^{\left(6\right)}\left(0\right)=6!\cdot-\frac1{362880}=-\frac1{504}$。

    1. $\displaystyle\int_0^{\infty}\frac{\ln x}{1+x^2}dx$。
    2. $\displaystyle\int_0^{\infty}e^{-x}\sin xdx$。
  8. 訣竅第一小題為經典問題,分兩段後運用變數變換對消;第二小題則需使用兩次分部積分法處理。
    解法
    1. 我們首先說明此瑕積分收斂,由於兩處瑕疵,故我們分為兩塊分別處理:

      $\displaystyle\int_0^{\infty}\frac{\ln x}{1+x^2}dx=\int_0^1\frac{\ln x}{1+x^2}dx+\int_1^{\infty}\frac{\ln x}{1+x^2}dx$

      針對前者,我們留意到被積分函數在 $\left(0,1\right)$ 上恆負,故

      $\displaystyle\int_0^1\frac{\ln x}{1+x^2}dx\geq\int_0^1\ln x dx=\lim_{t\to0^+}\int_t^1\ln xdx=\lim_{t\to0^+}\left(x\ln x-x\right)\Big|_t^1=\lim_{t\to0^+}\left(-1-t\ln t+t\right)=-1$

      其瑕積分收斂;而後者在 $\left(1,\infty\right)$ 上恆正,故有

      $\displaystyle\int_1^{\infty}\frac{\ln x}{1+x^2}dx\leq\int_1^{\infty}\frac{\ln x}{x^2}dx=-\lim_{t\to\infty}\int_1^t\ln xd\frac1x=\lim_{t\to\infty}\left.-\left(\frac{\ln x}x+\frac1x\right)\right|_1^t=\lim_{t\to\infty}\left(1-\frac{\ln t}t-\frac1t\right)=1$

      綜上可知兩個瑕積分皆收斂。

      現在特別去觀察前者的積分,我們令 $\displaystyle u=\frac1x$,那麼

      • 當 $x\to0^+$ 時有 $u\to\infty$;
      • 當 $x=1$ 時有 $u=1$;
      • 移項有 $\displaystyle x=\frac1u$,求導則得 $\displaystyle dx=-\frac1{u^2}du$。
      據此第一個瑕積分可改寫如下

      $\displaystyle\int_0^1\frac{\ln x}{1+x^2}dx=\int_\infty^1\frac{-\ln u}{u^2+1}\cdot-du=-\int_1^{\infty}\frac{\ln u}{1+u^2}du$

      從而與第二個瑕積分相加可恰好消去,從而所求為零。

    2. 先考慮其對應的不定積分並使用分部積分法計算如下

      $\displaystyle\begin{aligned}\int e^{-x}\sin xdx&=-\int\sin xde^{-x}=-e^{-x}\sin x+\int e^{-x}\cos xdx\\&=-e^{-x}\sin x-\int\cos xde^{-x}=-e^{-x}\sin x-e^{-x}\cos x-\int e^{-x}\sin xdx\end{aligned}$

      因此得到不定積分為

      $\displaystyle\int e^{-x}\sin xdx=-e^{-x}\frac{\sin x+\cos x}2+C$

      故所求為

      $\displaystyle\int_0^{\infty}e^{-x}\sin xdx=-\frac12\lim_{t\to\infty}\left(e^{-x}\sin x+e^{-x}\cos x\right)\Big|_0^t=-\frac12\lim_{t\to\infty}\left(e^{-t}\sin t+e^{-t}\cos t-1\right)=\frac12$


  9. 設 $z=f\left(x,y\right)$ 有連續的各二偏導函數,且 $x=r\cos\theta$,$y=r\sin\theta$。試證

    $\displaystyle\frac{\partial^2z}{\partial x^2}+\frac{\partial^2z}{\partial y^2}=\frac{\partial^2z}{\partial r^2}+\frac1{r^2}\frac{\partial^2z}{\partial\theta^2}+\frac1r\frac{\partial z}{\partial r}$。

  10. 訣竅運用多變函數的連鎖律計算求解即可。
    解法一首先留意到 $r=\sqrt{x^2+y^2}$、$\displaystyle\theta=\tan^{-1}\frac{y}x$,如此可使用多變函數連鎖律可知

    $\displaystyle\begin{aligned}&\frac{\partial f}{\partial x}=\frac{\partial f}{\partial r}\frac{\partial r}{\partial x}+\frac{\partial f}{\partial\theta}\frac{\partial\theta}{\partial x}=\frac{x}{\sqrt{x^2+y^2}}\frac{\partial f}{\partial r}-\frac{y}{x^2+y^2}\frac{\partial f}{\partial\theta}=\cos\theta\frac{\partial f}{\partial r}-\frac{\sin\theta}r\frac{\partial f}{\partial\theta}\\&\frac{\partial f}{\partial y}=\frac{\partial f}{\partial r}\frac{\partial r}{\partial y}+\frac{\partial f}{\partial\theta}\frac{\partial\theta}{\partial y}=\frac{y}{\sqrt{x^2+y^2}}\frac{\partial f}{\partial r}+\frac{x}{x^2+y^2}\frac{\partial f}{\partial\theta}=\sin\theta\frac{\partial f}{\partial r}+\frac{\cos\theta}r\frac{\partial f}{\partial\theta}\end{aligned}$

    進一步的計算二階偏導函數有

    $\displaystyle\begin{aligned}&\frac{\partial^2f}{\partial x^2}=\frac{\partial}{\partial x}\left(\cos\theta\frac{\partial f}{\partial r}-\frac{\sin\theta}r\frac{\partial f}{\partial\theta}\right)=\frac{\sin^2\theta}r\frac{\partial f}{\partial r}+\cos^2\theta\frac{\partial^2f}{\partial r^2}-\frac{2\sin\theta\cos\theta}r\frac{\partial^2f}{\partial\theta\partial r}+\frac{\sin^2\theta}{r^2}\frac{\partial^2f}{\partial\theta^2}\\&\frac{\partial^2f}{\partial y^2}=\frac{\partial}{\partial y}\left(\sin\theta\frac{\partial f}{\partial r}+\frac{\cos\theta}r\frac{\partial f}{\partial\theta}\right)=\frac{\cos^2\theta}r\frac{\partial f}{\partial r}+\sin^2\theta\frac{\partial^2f}{\partial r^2}+\frac{2\sin\theta\cos\theta}r\frac{\partial^2\theta\partial r}+\frac{\cos^2\theta}{r^2}\frac{\partial^2f}{\partial\theta^2}\end{aligned}$

    將兩式相加並使用 $\sin^2\theta+\cos^2\theta=1$ 便有所欲證的等式,證明完畢。
    解法二使用多變函數的連鎖律可知

    $\begin{aligned}&\displaystyle\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial r}=\cos\theta\frac{\partial f}{\partial x}+\sin\theta\frac{\partial f}{\partial y}\\&\frac{\partial f}{\partial\theta}=\frac{\partial f}{\partial x}\frac{\partial x}{\partial\theta}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial\theta}=-r\sin\theta\frac{\partial f}{\partial x}+r\cos\theta\frac{\partial f}{\partial y}\end{aligned}$

    進一步地計算二階偏導函數有

    $\displaystyle\begin{aligned}&\frac{\partial^2f}{\partial r^2}=\cos^2\theta\frac{\partial^2f}{\partial x^2}+2\cos\theta\sin\theta\frac{\partial^2f}{\partial x\partial y}+\sin^2\theta\frac{\partial^2f}{\partial y^2}\\&\frac{\partial^2f}{\partial\theta^2}=-r\cos\theta\frac{\partial f}{\partial x}-r\sin\theta\frac{\partial f}{\partial y}+r^2\sin^2\theta\frac{\partial^2f}{\partial x^2}-2r^2\sin\theta\cos\theta\frac{\partial^2f}{\partial x\partial y}+r^2\cos^2\theta\frac{\partial^2f}{\partial y^2}\end{aligned}$

    據此計算可以注意到

    $\displaystyle\frac{\partial^2f}{\partial r^2}+\frac1{r^2}\frac{\partial^2f}{\partial\theta^2}+\frac1r\frac{\partial f}{\partial r}=\left(\cos^2\theta+\sin^2\theta\right)\frac{\partial^2f}{\partial x^2}+\left(\sin^2\theta+\cos^2\theta\right)\frac{\partial^2f}{\partial y^2}=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}$


  11. 用 Lagrane method 求 $f\left(x,y,z\right)=y+xz-2x^2-y^2-z^2$ 之極大極小值,而要求點在 $x+y+z=35$ 之上。
  12. 訣竅根據題意使用拉格朗日乘子法求解,但僅能獲得一座標,由考慮極值的函數的特點可以注意到距離原點很遠處其函數值將無限至的小。
    解法設定拉格朗日乘子函數如下

    $F\left(x,y,z,\lambda\right)=y+xz-2x^2-y^2-z^2+\lambda\left(x+y+z-35\right)$

    據此解下列的聯立方程組

    $\left\{\begin{aligned}&F_x\left(x,y,z,\lambda\right)=z-4x+\lambda=0\\&F_y\left(x,y,z,\lambda\right)=1-2y+\lambda=0\\&F_z\left(x,y,z,\lambda\right)=x-2z+\lambda=0\\&F_{\lambda}\left(x,y,z,\lambda\right)=x+y+z-35=0\end{aligned}\right.$

    將第一式與第三式相減可得 $3z=5x$,即 $\displaystyle z=\frac{5x}3$,從而第一式與第二式可得 $\displaystyle\left(x,y,z\right)=\left(\frac{3\lambda}7,\frac{\lambda+1}2,\frac{5\lambda}7\right)$。將此代入第四式有

    $\displaystyle\frac{3\lambda}7+\frac{\lambda+1}2+\frac{5\lambda}7=35$

    故得 $\displaystyle\lambda=\frac{161}9$,故得座標 $\displaystyle\left(x,y,z\right)=\left(\frac{23}3,\frac{85}9,\frac{115}9\right)$。

    另一方面取 $\left(x,y,z\right)=\left(0,t,35-t\right)$,那麼可以注意到

    $f\left(0,t,35-t\right)=t-t^2-\left(35-t\right)^2\to-\infty~~\mbox{當}~~t\to\infty$

    故函數 $f$ 在 $x+y+z=35$ 上無極小值,而在 $\displaystyle\left(\frac{23}3,\frac{85}9,\frac{115}9\right)$ 處達到最大值,其值為 $\displaystyle-\frac{21272}{81}$。


  13. 用變數變換求 $\displaystyle\iint_RxdA$ 之值。此處 $R$ 為第一象限內,由 $y=x$,$4x^2-y^2=4$,$x$ 軸,$4x^2-y^2=16$ 所圍成之區域。
  14. 訣竅按提示使用變數代換法處理,這裡由邊界去考慮代換的處理。
    解法令 $u=4x^2-y^2$、$v=4x^2+y^2$,那麼觀察四段邊界可改寫如下
    • $y=x$ 可表達為 $\displaystyle v=\frac{5u}3$;
    • $4x^2-y^2=4$ 可表達為 $u=4$;
    • $x$ 軸($y=0$)可表達為 $v=u$;
    • $4x^2-y^2=16$ 則表達為 $u=16$
    再者 Jacobian 行列式能計算如下

    $\displaystyle\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}=\left|\begin{matrix}\displaystyle\frac{\partial x}{\partial u}&\displaystyle\frac{\partial x}{\partial v}\\\displaystyle\frac{\partial y}{\partial u}&\displaystyle\frac{\partial y}{\partial v}\end{matrix}\right|=\left|\begin{matrix}\displaystyle\frac{\partial u}{\partial x}&\displaystyle\frac{\partial u}{\partial y}\\\displaystyle\frac{\partial v}{\partial x}&\displaystyle\frac{\partial v}{\partial y}\end{matrix}\right|^{-1}=\left|\begin{matrix}8x&-2y\\8x&2y\end{matrix}\right|^{-1}=\frac1{32xy}=\frac1{8\sqrt{v^2-u^2}}$

    如此所求的重積分可用變數變換改寫並計算如下

    $\displaystyle\begin{aligned}\iint_RxdA&=\int_4^{16}\int_u^{\frac{5u}3}\sqrt{\frac{v+u}8}\cdot\frac1{8\sqrt{v^2-u^2}}dvdu\\&=\frac{\sqrt2}{32}\int_4^{16}\int_u^{\frac{5u}3}\frac1{\sqrt{v-u}}dvdu=\frac{\sqrt2}{16}\int_4^{16}\sqrt{v-u}\Big|_{v=u}^{v=\frac{5u}3}du\\&=\frac{\sqrt3}{24}\int_4^{16}\sqrt{u}du=\left.\frac{\sqrt3}{36}u^{\frac32}\right|_4^{16}=\frac{14\sqrt3}{9}\end{aligned}$


  15. 用 Stokes 定理求 $\displaystyle\iint_S\left(\mbox{curl}~F\cdot n\right)dS$ 之值。此處 $F=zi+xj+yk$;$S$ 是曲面 $z=\sqrt{5-x^2-y^2}-1$,$z>0$;$n$ 朝上。
  16. 訣竅根據題意使用 Stokes 定理即可;亦可按曲面積分的意義計算求解。
    解法一考慮曲面 $S$ 的邊界

    $\partial S=\left\{\left(x,y,z\right)\in\mathbb{R}^3:~x^2+y^2=4,~z=0.\right\}$

    應用 Stokes 定理可知

    $\displaystyle\iint_S\left(\mbox{curl}~F\cdot n\right)dS=\oint_{\partial S}F\cdot dr$

    現在將此邊界參數化為 $\left\{\begin{aligned}&x=2\cos\theta\\&y=2\sin\theta\\&z=0\end{aligned}\right.$,其中參數 $\theta\in\left[0,2\pi\right)$,如此所求的面積分可改寫並計算如下

    $\displaystyle\begin{aligned}\iint_S\left(\mbox{curl}~F\cdot n\right)dS&=\int_0^{2\pi}\left(0,2\cos\theta,2\sin\theta\right)\cdot\left(-2\sin\theta,2\cos\theta,0\right)d\theta\\&=4\int_0^{2\pi}\cos^2\theta d\theta=2\int_0^{2\pi}\left(1+\cos2\theta\right)d\theta=\left(2\theta+\sin2\theta\right)\Big|_0^{2\pi}=4\pi\end{aligned}$

    解法二【本題不可採用此法】

    首先計算旋度如下

    $\mbox{curl}~F=\left|\begin{matrix}\vec{i}&\vec{j}&\vec{k}\\\partial_x&\partial_y&\partial_z\\z&x&y\end{matrix}\right|=\left(1,1,1\right)$

    接著將該曲面參數化有$\left\{\begin{aligned}&x=\sqrt5\cos\theta\sin\phi\\&y=\sqrt5\sin\theta\sin\phi\\&z=-1+\sqrt5\cos\phi\end{aligned}\right.$,那麼參數範圍為 $\left\{\begin{aligned}&0\leq\theta\leq2\pi\\&0\leq\phi\leq\cos^{-1}\frac1{\sqrt5}\end{aligned}\right.$。據此所求的面積分可改寫並計算如下

    $\displaystyle\begin{aligned}\iint_S\left(\mbox{curl}~F\cdot n\right)dS&=\int_0^{2\pi}\int_0^{\cos^{-1}\frac1{\sqrt5}}\left(1,1,1\right)\cdot\left(\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi\right)\cdot5\sin\phi d\phi d\theta\\&=5\int_0^{2\pi}\int_0^{\cos^{-1}\frac1{\sqrt5}}\cos\theta\sin^2\phi d\phi d\theta+5\int_0^{2\pi}\int_0^{\cos^{-1}\frac1{\sqrt5}}\sin\theta\sin^2\phi d\phi d\theta+5\int_0^{2\pi}\int_0^{\cos^{-1}\frac1{\sqrt5}}\sin\phi\cos\phi d\phi d\theta\\&=0+0+\left.5\cdot2\pi\cdot\frac{-\cos^2\phi}2\right|_0^{\cos^{-1}\frac1{\sqrt5}}=5\pi\cdot\left(1-\frac15\right)=4\pi\end{aligned}$

沒有留言:

張貼留言