2020年2月21日 星期五

國立臺灣大學九十三學年度研究所碩士班入學考試試題:微積分與矩陣運算

  1. ($15$ 分)
    1. Please express the following quadratic form

      $3y_1^2+y_2^2+2y_3^2+4y_1y_2+5y_1y_3-6y_2y_3$

      as ${\bf Y}^t{\bf A}{\bf Y}$ where ${\bf Y}$ is a $3\times1$ vector whose transpose equals $\left(y_1,y_2,y_3\right)$.
    2. Please find a symmetric matrix ${\bf B}$, ${\bf B}\neq{\bf A}$, such that ${\bf Y}^t{\bf A}{\bf Y}={\bf Y}^t{\bf B}{\bf Y}$.
    3. What is the rank of matrix ${\bf A}$?
  2. 訣竅此為標準的二次型,可取出(唯一的)對稱矩陣具有題幹所示的形式,假若不需要對稱的條件則容易計算而有。
    解法
    1. 簡單起見可讓矩陣 ${\bf A}$ 盡可能多 $0$,故我們取

      ${\bf A}=\begin{pmatrix}3&4&5\\0&1&-6\\0&0&2\end{pmatrix}$.

      那麼可以檢驗如下

      $\begin{aligned}{\bf Y}^t{\bf AY}&=\begin{pmatrix}y_1&y_2&y_3\end{pmatrix}\begin{pmatrix}3&4&5\\0&1&-6\\0&0&2\end{pmatrix}\begin{pmatrix}y_1\\y_2\\y_3\end{pmatrix}\\&=\begin{pmatrix}3y_1&4y_1+y_2&5y_1-6y_2+2y_3\end{pmatrix}\begin{pmatrix}y_1\\y_2\\y_3\end{pmatrix}\\&=3y_1^2+y_2\left(4y_1+y_2\right)+y_3\left(5y_1-6y_2+2y_3\right)\\&=3y_1^2+y_2^2+2y_3^2+4y_1y_2+5y_1y_3-6y_2y_3.\end{aligned}$

    2. 取 ${\bf B}$ 如下

      ${\bf B}=\begin{pmatrix}3&2&5/2\\2&1&-3\\2/5&-3&2\end{pmatrix}$.

      容易檢驗 ${\bf Y}^t{\bf AT}={\bf Y}^t{\bf BY}$ 成立。
    3. 按照我們取的矩陣為上三角矩陣,並且對角元皆非零,從而明顯秩(rank)為 $3$。事實上無論如何選取矩陣 ${\bf A}$ 都有相同的秩,因為將其對角化後都必然具有相同的特徵值,而特徵值皆非零,從而秩為 $3$。

  3. ($10$ 分) Suppose ${\bf A}$ is a $n\times p$ matrix and ${\bf B}$ is a $p\times n$ matrix, please show that the trace of ${\bf AB}$ equals the trace of ${\bf BA}$.
  4. 訣竅按照矩陣乘法與跡的定義表達求和並適當的改寫以說明兩者相同。
    解法設 $A=\left(A_{ij}\right)_{n\times p}$ 且 $B=\left(B_{kl}\right)_{p\times n}$,那麼觀察有

    $\displaystyle\mbox{trace}\left({\bf AB}\right)=\sum_{s=1}^n\left({\bf AB}\right)_{ss}=\sum_{s=1}^n\sum_{t=1}^pA_{st}B_{ts}=\sum_{t=1}^p\sum_{s=1}^nB_{ts}A_{st}=\sum_{t=1}^p\left({\bf BA}\right)_{tt}=\mbox{trace}\left({\bf BA}\right)$.


  5. ($20$ 分) For a $3\times3$ matrix ${\bf A}=\begin{pmatrix}3&1&1\\1&0&2\\1&2&0\end{pmatrix}$.
    1. Please find its eigenvalues.
    2. Please find matrices ${\bf C}$ and ${\bf D}$ such that ${\bf A}={\bf CDC}^t$, ${\bf D}$ is a diagonal matrix, and ${\bf C}$ is an orthogonal matrix.
    3. Please find ${\bf A}^{-1}$, the inverse matrix of ${\bf A}$.
    4. Please find the eigenvalues of ${\bf A}^5+2{\bf A}^3$.
  6. 訣竅按照特徵根的定義求特徵多項式的根,隨後按照對角化的想法寫出 ${\bf C}$ 與 ${\bf D}$,而反方陣則可透過對角化的表示法立即求得。對於給定的矩陣的多項式組合的特徵值則可將原先的特徵值用相同的多項式組合產生。
    解法
    1. 首先考慮 ${\bf A}$ 的特徵多項式如下

      $\begin{aligned}p\left(x\right)&=\det\left(x{\bf I}-{\bf A}\right)=\begin{vmatrix}x-3&-1&-1\\-1&x&-2\\-1&-2&x\end{vmatrix}\\&=x^2\left(x-3\right)-2-2-x-4\left(x-3\right)-x=x^3-3x^2-6x+8=\left(x-4\right)\left(x-1\right)\left(x+2\right).\end{aligned}$

      故其特徵根為 $4$、$1$ 和 $-2$。
    2. 承前一小題,我們進一步對每個特徵值求其對應的特徵向量如下
      • 當 $x=4$ 時所對應的特徵向量為 $\begin{pmatrix}2\\1\\1\end{pmatrix}$;
      • 當 $x=1$ 時所對應的特徵向量為 $\begin{pmatrix}-1\\1\\1\end{pmatrix}$;
      • 當 $x=-2$ 時所對應的特徵向量為 $\begin{pmatrix}0\\1\\-1\end{pmatrix}$。
      將特徵向量單範化後可取

      $\displaystyle{\bf C}=\frac1{\sqrt6}\begin{pmatrix}2&-\sqrt2&0\\1&\sqrt2&\sqrt3\\1&\sqrt2&-\sqrt3\end{pmatrix},\qquad{\bf D}=\begin{pmatrix}4&0&0\\0&1&0\\0&0&-2\end{pmatrix}$.

      並且容易確認 ${\bf CC}^t={\bf C}^t{\bf C}=I$,故 ${\bf C}$ 為正交矩陣,並且滿足 ${\bf A}={\bf CDC}^t$。
    3. 由第二小題所得的關係式可以直接計算反方陣如下

      $\displaystyle\begin{aligned}{\bf A}^{-1}&={\bf CD}^{-1}{\bf C}^t=\frac16\begin{pmatrix}2&-\sqrt2&0\\1&\sqrt2&\sqrt3\\1&\sqrt2&-\sqrt3\end{pmatrix}\begin{pmatrix}1/4&0&0\\0&1&0\\0&0&-1/2\end{pmatrix}\begin{pmatrix}2&1&1\\-\sqrt2&\sqrt2&\sqrt2\\0&\sqrt3&-\sqrt3\end{pmatrix}\\&=\frac16\begin{pmatrix}1/2&-\sqrt2&0\\1/4&\sqrt2&-\sqrt3/2\\1/4&\sqrt2&\sqrt3/2\end{pmatrix}\begin{pmatrix}2&1&1\\-\sqrt2&\sqrt2&\sqrt2\\0&\sqrt3&-\sqrt3\end{pmatrix}=\begin{pmatrix}1/2&-1/4&-1/4\\-1/4&1/8&5/8\\-1/4&5/8&1/8\end{pmatrix}\\&=\frac18\begin{pmatrix}4&-2&-2\\-2&1&5\\-2&5&1\end{pmatrix}.\end{aligned}$

    4. 設 $q\left(x\right)=x^5+2x^3$,那麼 $q\left(A\right)$ 的特徵值則為 $q\left(4\right)$、$q\left(1\right)$ 和 $q\left(-2\right)$,亦即為 $1152$、$3$ 和 $-48$。

  7. ($15$ 分) Define for $x=0,1,2,\cdots,n$, the following function

    $\displaystyle f\left(x\right)=\frac{n!}{x!\left(n-x\right)!}p^x\left(1-p\right)^{n-x}$

    where the positive integer $n$ and $p\in\left(0,1\right)$ are both constants. Please express the summation $\displaystyle\sum_{x=0}^nx^2f\left(x\right)$ in terms of $n$ and $p$.
  8. 訣竅將級數改寫後利用二項式定理求和即可。
    解法首先可以注意到

    $\displaystyle\begin{aligned}x^2f\left(x\right)&=npx\frac{\left(n-1\right)!}{\left(x-1\right)!\left(n-x\right)!}p^{x-1}\left(1-p\right)^{n-x}\\&=n\left(n-1\right)p^2\frac{\left(n-2\right)!}{\left(x-2\right)!\left(n-x\right)!}p^{x-2}\left(1-p\right)^{n-x}+np\frac{\left(n-1\right)!}{\left(x-1\right)!\left(n-x\right)!}p^{x-1}\left(1-p\right)^{n-x}.\end{aligned}$

    如此求和可知

    $\displaystyle\begin{aligned}\sum_{x=0}^nx^2f\left(x\right)&=n\left(n-1\right)p^2\sum_{x=2}^n\frac{\left(n-2\right)!}{\left(x-2\right)!\left(n-x\right)!}p^{x-2}\left(1-p\right)^{n-x}+np\sum_{x=1}^n\frac{\left(n-1\right)!}{\left(x-1\right)!\left(n-x\right)!}p^{x-1}\left(1-p\right)^{n-x}\\&=n\left(n-1\right)p^2+np=np\left(1+np-p\right).\end{aligned}$


  9. ($20$ 分) Derive the first and second derivative of the following functions with respect to $x$.
    1. $x^x$
    2. $\log\left|\log x\right|$
  10. 訣竅使用連鎖律計算即可,其中第一小題應先使用換底公式。
    解法
    1. 換底後使用連鎖律求導如下

      $\displaystyle\frac d{dx}x^x=\frac d{dx}e^{x\log x}=e^{x\log x}\cdot\left(1+\log x\right)=x^x\left(1+\log x\right)$.

      進一步求二階導函數則有

      $\displaystyle\frac{d^2}{dx^2}x^x=\frac{d}{dx}x^x\left(1+\log x\right)=x^x\left(1+\log x\right)^2+x^{x-1}$.

    2. 使用連鎖律求導有

      $\displaystyle\frac d{dx}\log\left|\log x\right|=\frac1{x\log x}$.

      進一步求二階導函數則有

      $\displaystyle\frac{d^2}{dx^2}\log\left|\log x\right|=\frac{d}{dx}\frac1{x\log x}=-\frac{1+\log x}{x^2\log^2x}$.


  11. ($10$ 分) Does the infinite series $\displaystyle\sum_{n=1}^\infty\frac n{3n^2+3n+7}$ converge or diverge? Please verify your answer.
  12. 訣竅運用極限比較審歛法即可。
    解法設 $\displaystyle a_n=\frac{n}{3n^2+3n+7}$ 與 $\displaystyle b_n=\frac1n$,容易看出 $\displaystyle\lim_{n\to\infty}\frac{a_n}{b_n}=\frac13$,因此由極限比較審歛法可知兩級數 $\displaystyle\sum_{n=1}^\infty a_n$ 與 $\displaystyle\sum_{n=1}^\infty b_n$ 有相同的歛散性。而後者為調和級數($p$ 級數在 $p=1$ 的情形)故發散,從而題目給定的級數亦發散。

  13. ($10$ 分) Please show that $\sqrt{1+x}$ can be approximated by $\displaystyle\left(1+\frac12x-\frac18x^2\right)$ on the interval $\left[0,0.1\right]$.
  14. 訣竅運用 Taylor 定理計算之。
    解法設 $f\left(x\right)=\sqrt{1+x}$,那麼由 Taylor 定理可知

    $\displaystyle f\left(x\right)=f\left(0\right)+f'\left(0\right)x+\frac{f''\left(x\right)}2x^2+\frac{f'''\left(\xi\right)}6x^3=1+\frac12x-\frac18x^2+\frac{\left(1+\xi\right)^{-3/2}}{16}x^3$,

    其中 $\xi\in\left(0,x\right)\subset\left[0,0.1\right]$。因此

    $\displaystyle\left|\sqrt{1+x}-\left(1+\frac12x-\frac18x^2\right)\right|\leq\frac{0.1^3}{16}=\frac1{16000}=6.25\times10^{-5}$.

    故使用該多項式在 $\left[0,0.1\right]$ 逼近 $\sqrt{1+x}$ 時其誤差至多不超過 $6.25\times10^{-5}$,在大多數場合都是足夠小的誤差了。

沒有留言:

張貼留言