- Let $y=y\left(x\right)$ satisfy $y\left(1\right)=1$ and $x^3+2x^2y-y^3=2$. Find $y''\left(1\right)$.
- Find $\displaystyle\left.\frac{d}{dx}2^{\tan x}\right|_{x=\pi/4}$.
- Find $\displaystyle\lim_{x\to\infty}\left(3x^2+5\right)^{\frac1{\ln x+1}}$.
- Given $f\left(x\right)=\cos^2x$, find $f^{\left(2k\right)}\left(0\right)$.
- Find the arc length of the curve $y=\ln\left(1-x^2\right)$ from $x=0$ to $x=1/4$.
- Let $g\left(x\right)$ be the inverse function of $f\left(x\right)=x^2e^x$ for $x\geq0$. Find $\displaystyle\int_0^eg\left(x\right)dx$.
- 當 $x=0$ 時有 $u=0$;
- 當 $x=e$ 時有 $u=1$;
- 求導有 $dx=f'\left(u\right)=\left(2ue^u+u^2e^u\right)du$
- Find the tangent plane to the surface $\tan\left(xy\right)=\sin\left(yz\right)$ at the point $x=1/4$, $y=\pi$ and $z=1/2$.
- Given $f\left(x,y\right)=x^3+2xy+y^3$, find the unit vector $\vec{u}$ such that the directional derivative of $f\left(x,y\right)$ at the point $\left(1,2\right)$ and in the direction $\vec{u}$ attains its maximum.
- Evaluate $\displaystyle\int_{x=0}^{x=8}\int_{y=x^{1/3}}^{y=2}\sin\left(y^4\right)dydx$.
- Solve the differential equation $x^3y'=\sec y$, $y\left(1\right)=\pi/6$.
訣竅
運用隱函數微分求解。解法
運用隱函數微分求導可得$3x^2+4xy+2x^2y'-3y^2y'=0$
取 $x=1$ 並使用 $y\left(1\right)=1$ 有$3+4+2y'\left(1\right)-3y'\left(1\right)=0$
可解得 $y'\left(1\right)=7$。進一步地再用一次隱函數微分可得$6x+4y+8xy'+2x^2y''-6yy'^2-3y^2y''=0$
取 $x=1$ 並使用 $y\left(1\right)=1$ 與 $y'\left(1\right)=7$ 可得$6+4+56+2y''\left(1\right)-294-3y''\left(1\right)=0$
因此所求為 $y''\left(1\right)=-228$。訣竅
運用連鎖律進行微分即可。解法
使用連鎖律求導可得$\displaystyle\frac{d}{dx}2^{\tan x}=2^{\tan x}\ln 2\cdot\frac{d}{dx}\tan x=2^{\tan x}\ln 2\sec^2x$
在 $x=\pi/4$ 取值可得所求為 $\displaystyle\left.\frac{d}{dx}2^{\tan x}\right|_{x=\pi/4}=4\ln2$。訣竅
運用換底公式與羅必達法則求解。解法
運用換底公式與羅必達法則可計算如下$\displaystyle\lim_{x\to\infty}\left(3x^2+5\right)^{\frac1{\ln x+1}}=\lim_{x\to\infty}\exp\left(\frac{\ln\left(3x^2+5\right)}{\ln x+1}\right)=\exp\left(\lim_{x\to\infty}\frac{\ln\left(3x^2+5\right)}{\ln x+1}\right)=\exp\left(\lim_{x\to\infty}\frac{6x/\left(3x^2+5\right)}{1/x}\right)=e^2$
訣竅
運用倍角公式與求導之間產生的規律求解。解法
使用二倍角公式可知$\displaystyle f\left(x\right)=\cos^2x=\frac{1+\cos2x}2$
那麼容易看出當 $k\in\mathbb{N}$ 時有$f^{\left(2k\right)}\left(x\right)=\left(-1\right)^k2^{2k-1}\cos2x$
故所求為$f^{\left(2k\right)}\left(0\right)=\begin{cases}1,&k=0,\\\left(-1\right)^k2^{2k-1},&k\in\mathbb{N}.\end{cases}$
訣竅
運用曲線弧長公式求解即可。解法
使用曲線弧長公式如下$\displaystyle\begin{aligned}s&=\int_0^{1/4}\sqrt{1+\left(\frac{d}{dx}\ln\left(1-x^2\right)\right)^2}dx=\int_0^{1/4}\sqrt{1+\left(\frac{-2x}{1-x^2}\right)^2}dx=\int_0^{1/4}\frac{1+x^2}{1-x^2}dx\\&=\int_0^{1/4}\left(-1+\frac1{1-x}+\frac1{1+x}\right)dx=\left.\left(-x+\ln\frac{1+x}{1-x}\right)\right|_0^{1/4}=-\frac14+\ln\frac53\end{aligned}$
訣竅
利用反函數的定義考慮變數變換。解法
令 $x=f\left(u\right)$,那麼$\displaystyle\begin{aligned}\int_0^eg\left(x\right)dx&=\int_0^1u\cdot\left(2ue^u+u^2e^u\right)du=\int_0^1\left(2u^2+u^3\right)de^u=\left(2u^2+u^3\right)e^u\Big|_0^1-\int_0^1\left(4u+3u^2\right)e^udu\\&=3e-\int_0^1\left(4u+3u^2\right)de^u=3e-\left(4u+3u^2\right)e^u\Big|_0^1+\int_0^1\left(4+6u\right)e^udu\\&=-4e+2\int_0^1\left(2+3u\right)de^u=-4e+2\left(2+3u\right)e^u\Big|_0^1-2\int_0^13e^udu\\&=6e-4-6e^u\Big|_0^1=2\end{aligned}$
【另解】 讀者可能也可以注意到這樣的計算:
$\displaystyle\int_0^eg\left(x\right)dx=\int_0^1\left(2u^2+u^3\right)e^udu=2\int_0^1u^2e^udu+\int_0^1u^3de^u=e-\int_0^1u^2e^udu$
同樣使用分部積分法可得如上類似的過程。訣竅
運用梯度求出曲面的法向量,隨後使用點法式寫出切平面方程式。解法
設 $F\left(x,y,z\right)=\tan\left(xy\right)-\sin\left(yz\right)$,如此計算其梯度有$\nabla F\left(x,y,z\right)=\left(y\sec^2\left(xy\right),x\sec^2\left(xy\right)-z\cos\left(yz\right),-y\cos\left(yz\right)\right)$
因此曲面 $F\left(x,y,z\right)=0$ 在 $\left(1/4,\pi,1/2\right)$ 處的法向量為 $\nabla F\left(1/4,\pi,1/2\right)=\left(2\pi,1/2,0\right)$。故由點法式可知切平面方程式為$\displaystyle2\pi\left(x-\frac14\right)+\frac12\left(y-\pi\right)+0\left(z-\frac12\right)=0$
或寫為 $4\pi x+y=2\pi$。訣竅
因為函數沿著其梯度的方向可使方向導數達到最大值,故求其梯度即可。解法
直接計算梯度有$\nabla f\left(x,y\right)=\left(3x^2+2y,2x+3y^2\right)$
而在 $\left(1,2\right)$ 處的梯度為 $\nabla f\left(1,2\right)=\left(7,14\right)\parallel\left(1,2\right)$,故取 $\displaystyle\vec{u}=\frac{\left(1,2\right)}{\sqrt5}$。訣竅
交換積分次序求解即可。解法
原積分範圍 $\left\{\begin{aligned}&0\leq x\leq8\\&x^{1/3}\leq y\leq2\end{aligned}\right.$ 可改寫為 $\left\{\begin{aligned}&0\leq x\leq y^3\\&0\leq y\leq2\end{aligned}\right.$,如此所求的重積分可改寫並計算如下$\displaystyle\int_{x=0}^{x=8}\int_{y=x^{1/3}}^{y=2}\sin\left(y^4\right)dydx=\int_0^2\int_0^{y^3}\sin\left(y^4\right)dxdy=\int_0^2y^3\sin\left(y^4\right)dy=\left.-\frac{\cos\left(y^4\right)}4\right|_0^2=\frac{1-\cos16}4$
訣竅
運用分離變量法求解即可。解法
運用分離變量法改寫如下$\displaystyle\cos ydy=\frac{dx}{x^3}$
兩邊在 $\left[1,x\right]$ 上同取積分可得$\displaystyle\sin\left(y\left(x\right)\right)-\sin\left(y\left(1\right)\right)=-\frac1{2x^2}+\frac12=\frac{x^2-1}{2x^2}$
因此所求為$\displaystyle y\left(x\right)=\sin^{-1}\left(\frac{2x^2-1}{2x^2}\right)$
- Evaluate $\displaystyle\int_{y=0}^{y=2/3}\int_{x=y}^{x=2-2y}\left(x+2y\right)e^{y-x}dxdy$ by making the change of variable $u=x+2y$ and $v=y-x$.
- Use Lagrange multipliers to find the minimal distance from the origin to the surface $z^2=xy+1$.
- 若 $z=0$,則第四式寫為 $xy=-1$,或 $y=-x^{-1}$,從而第一式與第二式分別為 $2x-\lambda x^{-1}=0$ 與 $-2x^{-1}+\lambda x=0$,皆乘以 $x$ 則有 $2x^2=\lambda$、$\lambda x^2=2$,故有 $2x^4=2$,至此解得 $x=\pm1$,從而 $y=\mp1$。
- 若 $\lambda=1$,則第一式與第二式寫為 $2x+y=0$ 與 $2y+x=0$,故得 $\left(x,y\right)=\left(0,0\right)$,那麼第四式則給出 $z=\pm1$。
訣竅
按照題意使用變數變換,其中應留意積分範圍的改寫與 Jacobian 行列式的計算;亦可直接計算重積分。解法一
按照題意中的變數變換,容易解得 $\displaystyle x=\frac{u-2v}3$、$\displaystyle y=\frac{u+v}3$,如此積分範圍 $\left\{\begin{aligned}&y\leq x\leq2-2y\\&0\leq y\leq2/3\end{aligned}\right.$ 可以表達為$\displaystyle\frac{u+v}3\leq\frac{u-2v}3\leq\frac{6-2u-2v}3,\qquad0\leq\frac{u+v}3\leq\frac23$
即 $\left\{\begin{aligned}&0\leq u\leq2\\&-u\leq v\leq0\end{aligned}\right.$。再者其 Jacobian 行列式可計算如下$\displaystyle\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}=\left|\begin{matrix}\displaystyle\frac{\partial x}{\partial u}&\displaystyle\frac{\partial x}{\partial v}\\\displaystyle\frac{\partial y}{\partial u}&\displaystyle\frac{\partial y}{\partial v}\end{matrix}\right|=\left|\begin{matrix}\displaystyle\frac13&\displaystyle-\frac23\\\displaystyle\frac13&\displaystyle\frac13\end{matrix}\right|=\frac13$
據此所求的重積分可改寫並計算如下$\displaystyle\begin{aligned}\int_{y=0}^{y=2/3}\int_{x=y}^{x=2-2y}\left(x+2y\right)e^{y-x}dxdy&=\int_0^2\int_{-u}^0ue^v\cdot\frac13dvdu\\&=\frac13\int_0^2u\left(1-e^{-u}\right)du=\left.\frac13\left(ue^{-u}+e^{-u}+\frac{u^2}2\right)\right|_0^2=\frac{3e^{-2}+1}3\end{aligned}$
解法二【本題不可採用此法】
直接計算重積分有$\displaystyle\begin{aligned}\int_{y=0}^{y=2/3}\int_{x=y}^{x=2-2y}\left(x+2y\right)e^{y-x}dxdy&=-\int_0^{2/3}e^y\int_y^{2-2y}\left(x+2y\right)de^{-x}dy\\&=-\int_0^{2/3}\left[\left(x+2y\right)e^{y-x}\Big|_{x=y}^{x=2-2y}-e^y\int_y^{2-2y}e^{-x}dx\right]dy\\&=-\int_0^{2/3}\left(3e^{3y-2}-3y-1\right)dy=\\&=\left.\left(-e^{3y-2}+\frac{3y^2}2+y\right)\right|_0^{2/3}\\&=\frac13+e^{-2}=\frac{3e^{-2}+1}3\end{aligned}$
訣竅
按題意使用拉格朗日乘子法求條件極值;亦可使用初等不等式求極值。解法一
考慮與原點的距離平方函數 $f\left(x,y,z\right)=x^2+y^2+z^2$,那麼設定拉格朗日乘子函數如下$F\left(x,y,z,\lambda\right)=x^2+y^2+z^2+\lambda\left(xy-z^2+1\right)$
據此解下列的聯立方程組$\left\{\begin{aligned}&F_x\left(x,y,z,\lambda\right)=2x+\lambda y=0\\&F_y\left(x,y,z,\lambda\right)=2y+\lambda x=0\\&F_z\left(x,y,z,\lambda\right)=2z-2\lambda z=0\\&F_{\lambda}\left(x,y,z,\lambda\right)=xy-z^2+1=0\end{aligned}\right.$
由第三式可知 $z=0$ 或 $\lambda=1$。$\left(1,-1,0\right),\quad\left(-1,1,0\right),\quad\left(0,0,1\right),\quad\left(0,0,-1\right)$
故直接驗算最近的距離為 $1$,座標為 $\left(0,0,\pm1\right)$。解法二【本題不可採用此法】
由於 $\left(x+y\right)^2\geq0$,故 $\displaystyle xy\geq-\frac{x^2+y^2}2$,如此曲面 $z^2=xy+1$ 上的點與原點的距離有如下的估算$\displaystyle d=\sqrt{x^2+y^2+z^2}=\sqrt{x^2+xy+y^2+1}\geq\sqrt{\frac{x^2+y^2}2+1}=1$
其中等號成立條件為 $\left(x,y\right)=\left(0,0\right)$,此時 $z=\pm1$,故最近點座標為 $\left(0,0,\pm1\right)$。
沒有留言:
張貼留言