2020年6月18日 星期四

國立臺灣大學一百零一學年度研究所碩士班入學考試試題:微積分(A)

  1. ($10\%$) Suppose that $f\left(x\right)=1$ if $x$ is rational and $f\left(x\right)=0$ if $x$ is irrational. Show that $f\left(x\right)$ is discontinuous at every point.
  2. 訣竅運用反證法以及有理數與無理數的稠密性。
    解法假設存在一點 $x_0\in\mathbb{R}$ 使 $f$ 在 $x_0$ 處連續。那麼存在 $\delta>0$ 使得 $\left|x-x_0\right|<\delta$ 蘊含 $\displaystyle\left|f\left(x\right)-f\left(x_0\right)\right|<\frac12$。由於區間 $\left(x_0-\delta,x_0+\delta\right)$ 有有理數也有無理數,任取兩個記為 $q$ 與 $q'$,如此便有

    $\displaystyle1=f\left(q\right)-f\left(q'\right)=\left|f\left(q\right)-f\left(q'\right)\right|\leq\left|f\left(q\right)-f\left(x_0\right)\right|+\left|f\left(x_0\right)-f\left(q'\right)\right|<\frac12+\frac12=1$

    此為矛盾。

  3. ($10\%$) Suppose that $f\left(x\right)=x\sin\left(1/x\right)$ if $x\neq0$ and $f\left(x\right)=0$ if $x=0$. Show that $f\left(x\right)$ is continuous at $x=0$ but not differentiable at $x=0$.
  4. 訣竅運用夾擠定理與求導的定義驗證之。
    解法

    對於任何非零的 $x$ 而言,恆有 $0\leq\left|x\sin\left(1/x\right)\right|\leq\left|x\right|$。由於 $\displaystyle\lim_{x\to0}0=0=\lim_{x\to0}\left|x\right|$,故由夾擠定理可知

    $\displaystyle\lim_{x\to0}f\left(x\right)=\lim_{x\to0}x\sin\left(\frac1x\right)=0=f\left(0\right)$

    因而 $f$ 在 $x=0$ 處連續。

    進一步地,我們計算 $f$ 在 $x=0$ 處的導數有

    $\displaystyle\lim_{h\to0}\frac{f\left(h\right)-f\left(0\right)}h=\lim_{h\to0}\sin\frac1h$

    然而我們可取兩個皆趨於零的數列 $\displaystyle a_n=\frac{2}{\pi+2n\pi}$ 與 $\displaystyle b_n=\frac{2}{3\pi+2n\pi}$ 使得 $\displaystyle\sin\frac1{a_n}=1$ 且 $\displaystyle\sin\frac1{b_n}=-1$,從而上述極限不存在,即 $f$ 在原點不可求導。


  5. ($10\%$) Let $\displaystyle\sum_{n=1}^{\infty}a_n$ be a convergent series of positive terms, where $a_n$ is a monotone decreasing function of $n$. Show that $\displaystyle\sum_{n=1}^{\infty}2^na_{2^n}$ converges.
  6. 訣竅藉由比較審歛法估算大小即可。
    解法設 $\displaystyle s_k=\sum_{n=1}^k2^na_{2^n}$,那麼有

    $\displaystyle\begin{aligned}s_k&=2a_2+4a_4+8a_8+\cdots+2^ka_{2^k}=2\left(a_2+2a_4+4a_8+\cdots+2^{k-1}a_{2^k}\right)\\&<2\left(a_2+a_3+a_4+a_5+\cdots+a_8+\cdots+a_{2^k}\right)<2\sum_{n=1}^{\infty}a_n\end{aligned}$

    至此可以發現 $s_k$ 遞增有上界,從而該 $\left\{s_k\right\}_{k=1}^{\infty}$ 收斂,即給定級數收斂。

  7. ($7\%$) ($7\%$) Find the following limits:

    (4a) $\displaystyle\lim_{\left(x_1,x_2\right)\to\left(0,0\right)}\frac{x_1^3-x_2^3}{x_1^2+x_2^2}$. (4b) $\displaystyle\lim_{\left(x_1,x_2\right)\to\left(0,0\right)}\frac{x_1x_2}{x_1^2+x_2^2}$.

  8. 訣竅藉由多項式之次數可檢驗判斷極限是否存在,隨後運用夾擠定理給出證明,而對於不存在的情形給出例子。
    解法
    1. 首先可以觀察到

      $\displaystyle0\leq\left|\frac{x_1^3}{x_1^2+x_2^2}\right|=\frac{x_1^2}{x_1^2+x_2^2}\left|x_1\right|\leq\left|x_1\right|$, $\displaystyle0\leq\left|\frac{x_2^3}{x_1^2+x_2^2}\right|=\frac{x_2^2}{x_1^2+x_2^2}\left|x_2\right|\leq\left|x_2\right|$

      由於 $\displaystyle\lim_{\left(x_1,x_2\right)\to\left(0,0\right)}\left|x_1\right|=0=\lim_{\left(x_1,x_2\right)\to\left(0,0\right)}\left|x_2\right|$,從而兩者使用夾擠定理可知

      $\displaystyle\lim_{\left(x_1,x_2\right)\to\left(0,0\right)}\frac{x_1^3}{x_1^2+x_2^2}=0=\lim_{\left(x_1,x_2\right)\to\left(0,0\right)}\frac{x_2^3}{x_1^2+x_2^2}$

      因此所求由四則運算定理能知為

      $\displaystyle\lim_{\left(x_1,x_2\right)\to\left(0,0\right)}\frac{x_1^3-x_2^3}{x_1^2+x_2^2}=\lim_{\left(x_1,x_2\right)\to\left(0,0\right)}\frac{x_1^3}{x_1^2+x_2^2}-\lim_{\left(x_1,x_2\right)\to\left(0,0\right)}\frac{x_2^3}{x_1^2+x_2^2}=0-0=0$

    2. 由於沿著 $x_1$ 軸或 $x_2$ 軸的函數值恆為零,但沿著直線 $x_1=x_2$ 的函數值恆為 $\displaystyle\frac12$,故極限不存在。

  9. ($8\%$) ($8\%$) Evaluate the following integrals:

    (5a) $\displaystyle\int\sin\left(\ln x\right)dx$. (5b) $\displaystyle\int_0^{\ln4}\frac{e^x}{\sqrt{e^{2x}+9}}dx$.

  10. 訣竅分別運用分部積分法與變數代換法處理即可。
    解法
    1. 直接使用分部積分法可知

      $\displaystyle\begin{aligned}\int\sin\left(\ln x\right)dx&=x\sin\left(\ln x\right)-\int x\cos\left(\ln x\right)\cdot\frac1xdx=x\sin\left(\ln x\right)-\int\cos\left(\ln x\right)dx\\&=x\sin\left(\ln x\right)-\left[x\cos\left(\ln x\right)-\int x\cdot-\sin\left(\ln x\right)\cdot\frac1xdx\right]=x\sin\left(\ln x\right)-x\cos\left(\ln x\right)-\int\sin\left(\ln x\right)dx\end{aligned}$

      經由移項整理可得

      $\displaystyle\int\sin\left(\ln x\right)dx=\frac{x\sin\left(\ln x\right)-x\cos\left(\ln x\right)}2+C$

    2. 令 $x=\ln\left(3\tan\theta\right)$,那麼
      • 當 $x=0$ 時有 $\displaystyle\theta=\tan^{-1}\frac13$
      • 當 $x=\ln 4$ 時有 $\displaystyle\theta=\tan^{-1}\frac43$
      • 容易知道 $e^x=3\tan\theta$,求導則有 $e^xdx=3\sec^2\theta d\theta$。
      如此所求的定積分可改寫並計算如下

      $\displaystyle\begin{aligned}\int_0^{\ln4}\frac{e^x}{\sqrt{e^{2x}+9}}dx&=\int_{\tan^{-1}\frac13}^{\tan^{-1}\frac43}\frac{3\sec^2\theta d\theta}{3\sec\theta}=\int_{\tan^{-1}\frac13}^{\tan^{-1}\frac43}\sec\theta d\theta=\ln\left|\sec\theta+\tan\theta\right|\Big|_{\tan^{-1}\frac13}^{\tan^{-1}\frac43}\\&=\ln\left|\frac43+\sec\left(\tan^{-1}\frac43\right)\right|-\ln\left|\frac13+\sec\left(\tan^{-1}\frac13\right)\right|=\ln3-\ln\left(\frac{1+\sqrt{10}}3\right)=\ln\left(\sqrt{10}-1\right)\end{aligned}$


  11. ($20\%$) Solve the differential equation:

    $\displaystyle\left(x+1\right)\frac{dy}{dx}-2\left(x^2+x\right)y=\frac{e^{x^2}}{x+1}$, $x>-1$, $y\left(0\right)=5$.

  12. 訣竅運用積分因子法求解即可。
    解法首先同除以 $\left(x+1\right)$ 可得

    $\displaystyle\frac{dy}{dx}-2xy=\frac{e^{x^2}}{\left(x+1\right)^2}$

    如此觀察能知積分因子為 $\mu=e^{\int\left(-2x\right)dx}=e^{-x^2}$,據此同乘以 $e^{-x^2}$ 可得

    $\displaystyle\frac{d}{dx}\left(e^{-x^2}y\right)=e^{-x^2}\frac{dy}{dx}-2xe^{-x^2}y=\frac1{\left(x+1\right)^2}$

    同時在 $\left[0,x\right]$ 上取定積分可得

    $\displaystyle e^{-x^2}y\left(x\right)-y\left(0\right)=-\frac1{x+1}+1=\frac{x}{x+1}$

    由 $y\left(0\right)=5$,可解得

    $\displaystyle y\left(x\right)=\frac{6x+5}{x+1}e^{x^2}$


  13. ($10\%$) Find the area of the region in the first quadrant bounded by the line $y=x$, the line $x=2$, the curve $y=x^{-2}$, and the $x$-axis.
  14. 訣竅直接分段兩式表達面積即可。
    解法容易看出所求的面積能列式並計算如下

    $\displaystyle A=\int_0^1xdx+\int_1^2x^{-2}dx=\left.\frac{x^2}2\right|_0^1+\left(-x^{-1}\right)\Big|_1^2=\frac12+\left(-\frac12+1\right)=1$


  15. ($10\%$) Find a curve through the point $\left(0,0\right)$ whose length integral is

    $\displaystyle\int_1^4\sqrt{1+\frac1{4x}}dx$.

  16. 訣竅運用曲線弧長公式即可。
    解法設該曲線可寫為 $y=f\left(x\right)$,則由曲線弧長公式可知 $\displaystyle1+f'^2\left(x\right)=1+\frac1{4x}$,即有 $\displaystyle f'^2\left(x\right)=\frac1{4x}$,能有 $\displaystyle f'\left(x\right)=\pm\frac1{2\sqrt{x}}$,取積分得 $f\left(x\right)=\pm\sqrt{x}+C$。由於通過原點故 $C=0$,故可取曲線為 $f\left(x\right)=\pm\sqrt{x}$。

沒有留言:

張貼留言