※ Please write down the detailed calculation process for all questions.
- (20%) The Black-Scholes formula for a call option with six input parameters (S,X,r,q,σ.T) is as follows.
c(S,X,r,q,σ,T)=Se−qTN(d1)−Xe−rTN(d2),
whered1=ln(S/X)+(r−q+σ2/2)Tσ√T and d2=ln(S/X)+(r−q−σ2/2)Tσ√T=d1−σ√T,
and N(⋅) si the cumulative distribution function of the standard normal distribution defined asN(d)=∫d−∞n(x)dx=∫d−∞1√2πe−x22dx,
where n(⋅) is the probability density function of the standard normal distribution.- (10%) Derive and express ∂c∂X as the form of AN(B). What are A and B?
- (10%) Derive and express ∂c∂T as the form of Cn(D)+EN(D)+FN(G). What are C, D, E, F, and G?
- 對 X 求導便有
∂c∂X=Se−qTn(d1)⋅−1Xσ√T−e−rtN(d2)−Xe−rTn(d2)⋅−1Xσ√T
其中觀察到d1+d2=2[ln(S/X)+(r−q)T]σ√T=2[ln(S/X)+(r−q)T]d1−d2
故 d21−d222=ln(S/X)+(r−q)T,從而有 ed21−d222=SXe(r−q)T,即得 Se−qTn(d1)=Xe−rTn(d2)。由此可得 ∂c∂X=−e−rTN(d2),因此 A=−e−rT、B=d2。 - 對 T 求導便有
∂c∂T=−Sqe−qTN(d1)+Se−qTn(d1)[−ln(S/X)2σT√T+r−q+σ2/22σ√T]+rXe−rTN(d2)−Xe−rTn(d2)⋅[−ln(S/X)2σT√T+r−q−σ2/22σ√T]
利用 Se−qTn(d1)=Xe−rTn(d2),如此有∂c∂T=Sσe−qT2√Tn(d1)−Sqe−qTN(d1)+rXe−rTN(d2)
取 C=Sσe−qT2√T、D=d1、E=−Sqe−qT、F=rXe−rT、G=d2。 - (10%) Consider that X follows a zero-mean normal distribution, i.e., X∼ND(0,σ2). Evaluate the expectation E[XecX], where c is a constant real number. (Hint: The probability density function for ND(μ,σ2)=1√2πσ2e−(x−μ)22σ2.)
- (20%) Consider J=N∑k=1Y to be a compound Poisson distribution, where N follows a Poisson distribution with the expected number of event occurrences to be λ, and for each event occurrence, one receives a payoff Y, which follows an independent and identical normal distribution, i.e., Y∼ND(μ,σ2). Furthermore, assume N and Y are independent.
- (10%) Evaluate E[N∏k=1Y].
- (10%) Evaluate E[NN∏k=1Y].
- 直接列式求解
E[N∏k=1Y]=∞∑N=0P(N)μN=∞∑N=0e−λλNN!μN=eλμ−λ∞∑N=0e−λμ(λN)NN!=eλ(μ−1)
- 直接列式求解
E[NN∏k=1Y]=∞∑N=0P(N)NμN=∞∑N=1e−λλN(N−1)!μN=λμeλμ−λ∞∑N=1e−λμ(λμ)N−1(N−1)!=λμeλ(μ−1)
- (10%) Evaluate the integral ∫sinx1+sinxdx.
- (10%) Perform the integration ∫dx√x−2.
- (10%) Find dy/dx for the equation exy−xy=0.
- (10%) Find the derivative of y with respect to x in the function y=ex−e−xex+e−x.
- (10%) Solve the differential equation (x2+1)dx+cosydy=0.
訣竅
運用多變數函數的連鎖律計算即可。解法
訣竅
按定義演算之。解法
由定義可知E[XecX]=∫∞−∞xecx⋅1√2πσ2e−x22σ2dx=ec2/2√2πσ2∫∞−∞xexp(−(x−cσ2)22σ2)dx
令 t=x−cσ2√2σ,那麼 dx=√2σdt,如此所求可改寫並計算如下E[XecX]=ec2σ2/2√π∫∞−∞(c+t√2σ)e−t2dt=cec2σ2/2+√2σec2/2√π∫∞−∞te−t2dt=cec2σ2/2
訣竅
利用隨機變數的獨立性從而計算之,其中應用條件期望值表達之。解法
訣竅
運用半角代換求解即可。解法
令 t=tanx2,那麼有 x=2tan−1t 且有 sinx=2t1+t2 以及 dx=2dt1+t2。據此所求的不定積分可改寫並整理如下∫sinx1+sinxdx=∫2t1+t21+2t1+t2⋅2dt1+t2=∫4t(1+t)2(1+t2)dt
運用部分分式法改寫並計算如下∫4t(1+t)2(1+t2)dt=∫(21+t2−2(1+t)2)dt=2tan−1t+21+t+C=x+21+tan(x/2)+C
訣竅
運用變數代換法求解即可。解法
令 t=√x−2,那麼 x=(t+2)2,故 dx=(2t+4)dt。從而給定的不定積分可改寫並計算如下∫dx√x−2=∫2t+4tdt=∫(2+4t)dt=2t+4ln|t|+C==2√x−4+4ln|√x−2|+C
訣竅
運用隱函數微分求導。解法
對 x 求導便有exy(y+xdydx)−(y+xdydx)=0
整理便有 dydx=−yx。訣竅
使用基本的導函數與除法的微分公式即可。解法
直接使用公式求導即有dydx=(ex+e−x)(ex+e−x)−(ex−e−x)(ex−e−x)(ex+e−x)2=4(ex+e−x)−2
訣竅
運用分離變量法的概念解微分方程。解法
直接積分便有x33+x+siny=C
沒有留言:
張貼留言