Loading [MathJax]/jax/output/HTML-CSS/jax.js

2020年9月27日 星期日

國立臺灣大學一百零八學年度研究所碩士班入學考試試題:微積分(C)

※ Please write down the detailed calculation process for all questions.

  1. (20%) The Black-Scholes formula for a call option with six input parameters (S,X,r,q,σ.T) is as follows.

    c(S,X,r,q,σ,T)=SeqTN(d1)XerTN(d2),

    where

    d1=ln(S/X)+(rq+σ2/2)TσT and d2=ln(S/X)+(rqσ2/2)TσT=d1σT,

    and N() si the cumulative distribution function of the standard normal distribution defined as

    N(d)=dn(x)dx=d12πex22dx,

    where n() is the probability density function of the standard normal distribution.
    1. (10%) Derive and express cX as the form of AN(B). What are A and B?
    2. (10%) Derive and express cT as the form of Cn(D)+EN(D)+FN(G). What are C, D, E, F, and G?
  2. 訣竅運用多變數函數的連鎖律計算即可。
    解法
    1. X 求導便有

      cX=SeqTn(d1)1XσTertN(d2)XerTn(d2)1XσT

      其中觀察到

      d1+d2=2[ln(S/X)+(rq)T]σT=2[ln(S/X)+(rq)T]d1d2

      d21d222=ln(S/X)+(rq)T,從而有 ed21d222=SXe(rq)T,即得 SeqTn(d1)=XerTn(d2)。由此可得 cX=erTN(d2),因此 A=erTB=d2
    2. T 求導便有

      cT=SqeqTN(d1)+SeqTn(d1)[ln(S/X)2σTT+rq+σ2/22σT]+rXerTN(d2)XerTn(d2)[ln(S/X)2σTT+rqσ2/22σT]

      利用 SeqTn(d1)=XerTn(d2),如此有

      cT=SσeqT2Tn(d1)SqeqTN(d1)+rXerTN(d2)

      C=SσeqT2TD=d1E=SqeqTF=rXerTG=d2

  3. (10%) Consider that X follows a zero-mean normal distribution, i.e., XND(0,σ2). Evaluate the expectation E[XecX], where c is a constant real number. (Hint: The probability density function for ND(μ,σ2)=12πσ2e(xμ)22σ2.)
  4. 訣竅按定義演算之。
    解法由定義可知

    E[XecX]=xecx12πσ2ex22σ2dx=ec2/22πσ2xexp((xcσ2)22σ2)dx

    t=xcσ22σ,那麼 dx=2σdt,如此所求可改寫並計算如下

    E[XecX]=ec2σ2/2π(c+t2σ)et2dt=cec2σ2/2+2σec2/2πtet2dt=cec2σ2/2


  5. (20%) Consider J=Nk=1Y to be a compound Poisson distribution, where N follows a Poisson distribution with the expected number of event occurrences to be λ, and for each event occurrence, one receives a payoff Y, which follows an independent and identical normal distribution, i.e., YND(μ,σ2). Furthermore, assume N and Y are independent.
    1. (10%) Evaluate E[Nk=1Y].
    2. (10%) Evaluate E[NNk=1Y].
    (Hint: For N, the probability of observing k events is given by P(k events ocurring)=eλλkk!.)
  6. 訣竅利用隨機變數的獨立性從而計算之,其中應用條件期望值表達之。
    解法
    1. 直接列式求解

      E[Nk=1Y]=N=0P(N)μN=N=0eλλNN!μN=eλμλN=0eλμ(λN)NN!=eλ(μ1)

    2. 直接列式求解

      E[NNk=1Y]=N=0P(N)NμN=N=1eλλN(N1)!μN=λμeλμλN=1eλμ(λμ)N1(N1)!=λμeλ(μ1)


  7. (10%) Evaluate the integral sinx1+sinxdx.
  8. 訣竅運用半角代換求解即可。
    解法t=tanx2,那麼有 x=2tan1t 且有 sinx=2t1+t2 以及 dx=2dt1+t2。據此所求的不定積分可改寫並整理如下

    sinx1+sinxdx=2t1+t21+2t1+t22dt1+t2=4t(1+t)2(1+t2)dt

    運用部分分式法改寫並計算如下

    4t(1+t)2(1+t2)dt=(21+t22(1+t)2)dt=2tan1t+21+t+C=x+21+tan(x/2)+C


  9. (10%) Perform the integration dxx2.
  10. 訣竅運用變數代換法求解即可。
    解法t=x2,那麼 x=(t+2)2,故 dx=(2t+4)dt。從而給定的不定積分可改寫並計算如下

    dxx2=2t+4tdt=(2+4t)dt=2t+4ln|t|+C==2x4+4ln|x2|+C


  11. (10%) Find dy/dx for the equation exyxy=0.
  12. 訣竅運用隱函數微分求導。
    解法x 求導便有

    exy(y+xdydx)(y+xdydx)=0

    整理便有 dydx=yx

  13. (10%) Find the derivative of y with respect to x in the function y=exexex+ex.
  14. 訣竅使用基本的導函數與除法的微分公式即可。
    解法直接使用公式求導即有

    dydx=(ex+ex)(ex+ex)(exex)(exex)(ex+ex)2=4(ex+ex)2


  15. (10%) Solve the differential equation (x2+1)dx+cosydy=0.
  16. 訣竅運用分離變量法的概念解微分方程。
    解法直接積分便有

    x33+x+siny=C

沒有留言:

張貼留言