Solution to Partial Differential Equations: Methods and Applications (Robert McOwen) Section 2.2
- Reduce to canonical form:
- uxx+5uxy+6uyy=0
- x2uxx−y2uyy=0
- This equation can be written as auxx+buxy+cuyy=0, where a=1, b=5 and c=6. Then by equation (10), we have
dydx=b±√b2−4ac2a=5±√25−242=5±12=2 or 3,
which implies y=2x+C1 and y=3x+C2 are the characteristics, and the PDE is hyperbolic on the whole plane R2. Let μ(x,y)=y−2x and η(x,y)=y−3x. Then we define ˜u:R2→R by ˜u(μ,η)=u(x,y)=u(μ−η,3μ−2η) for (μ,η)∈R2. It is easy to verify that˜uμη(μ,η)=∂μ∂η˜u(μ,η)=∂μ[ux(μ−η,3μ−2η)⋅(−1)+uy(μ−η,3μ−2η)⋅(−2)]=[−uxx(μ−η,3μ−2η)−3uxy(μ−η,3μ−2η)]+[−2uyx(μ−η,3μ−2η)−6uyy(μ−η,3μ−2η)]=0.
This gives ˜uμη(μ,η)=0. - This equation can be written as a(x,y)uxx+b(x,y)uxy+c(x,y)uyy=0, where a(x,y)=x2, b(x,y)=0 and c(x,y)=−y2. Then by equation (10), we have
dydx=b±√b2−4ac2a=0±√0+4x2y22x2=±yx,
which implies y=C1x and xy=C2. Let μ(x,y)=y/x and η(x,y)=xy. Then we define ˜u(η,μ)=u(x,y) for (x,y) and (μ,η) in some suitable domain. A direct computation givesux(x,y)=˜uμ(μ,η)μx+˜uη(μ,η)ηx=−yx2˜uμ(μ,η)+y˜uη(μ,η),uy(x,y)=˜uμ(μ,η)μy+˜uη(μ,η)ηy=1x˜uμ(μ,η)+x˜uη(μ,η).
Moreover, we get the second order partial derivativesuxx(x,y)=y2x4˜uμμ(μ,η)−2y2x2˜uμη(μ,η)+y2˜uηη(μ,η)+2yx3˜uμ(μ,η),uyy(x,y)=1x2˜uμμ(μ,η)+2˜uμη(μ,η)+x2˜uηη(μ,η)
Thus, the equation becomes0=x2uxx(x,y)−y2uyy(x,y)=(yx)2˜uμμ(μ,η)−2y2˜uμη(μ,η)+(xy)2˜uηη(μ,η)+2yx˜uμ(μ,η)−(yx)2˜uμμ(μ,η)−2y2˜uμη(μ,η)−(xy)2˜uηη(μ,η)=−4y2˜uμη(μ,η)+2yx˜uμ(μ,η)=−4μη˜uμη(μ,η)+2μ˜uμ(μ,η),
which means ˜uμη(μ,η)=12η˜uμ(μ,η). - Find the general solution:
- uxx−2uxysinx−uyycos2x−uycosx=0
- y2uxx−2yuxy+uyy=ux+6y
- The principal part of equation can be denoted by the principal symbol
σ(ξ)=σ(x,y;ξ)=ξ21+(−2sinx)ξ1ξ2+(−cos2x)ξ22.
Then by (10), we havedydx=−2sinx±√4sin2x−4⋅1⋅(−cos2x)2=−sinx±1,
which gives y=cosx±x+C. Let μ(x,y)=y−cosx+x and η(x,y)=y−cosx−x. Then we define ˜u(μ,η)=u(x,y). A simple computation givesux(x,y)=˜uμ(μ,η)μx+˜uη(μ,η)ηx=(sinx+1)˜uμ(μ,η)+(sinx−1)˜uη(μ,η),uy(x,y)=˜uμ(μ,η)μy+˜uη(μ,η)ηy=˜uμ(μ,η)+˜uη(μ,η).
Moreover, we get the second order partial derivaitvesuxx(x,y)=(sinx+1)2˜uμμ(μ,η)−(2cos2x)˜uμη(μ,η)+(sinx−1)2˜uηη(μ,η)+(cosx)˜uμ(μ,η)+(cosx)˜uη(μ,η),uxy(x,y)=(sinx+1)˜uμμ(μ,η)+(2sinx)˜uμη(μ,η)+(sinx−1)˜uηη(μ,η),uyy(x,y)=˜uμμ(μ,η)+2˜uμη(μ,η)+˜uηη(μ,η).
Therefore, the partial differential equation becomes˜uμη(μ,η)=0,
which can be solved by ˜u(μ,η)=F(μ)+G(η) for some F,G∈C2(R). Therefore, we obtainu(x,y)=F(y−cosx+x)+G(y−cosx−x).
- The principal part of equation can be denoted by the principal symbol
σ(ξ)=σ(x,y;ξ)=y2ξ21−2yξ1ξ2+ξ22.
Then by (10), we havedydx=−2y±√4y2−4⋅y2⋅12y2=−1y,
which gives 2x+y2=C. Let μ(x,y)=2x+y2 and η(x,y)=y. Then we define ˜u(μ,η)=u(x,y). A simple computation givesux(x,y)=˜uμ(μ,η)μx+˜uη(μ,η)ηx=2˜uμ(μ,η),uy(x,y)=˜uμ(μ,η)μy+˜uη(μ,η)ηy=2y˜uμ(μ,η)+˜uη(μ,η).
Moreover, we get the second order partial derivativesuxx(x,y)=4˜uμμ(μ,η),uxy(x,y)=8y˜uμμ(μ,η)+2˜uμη(μ,η),uyy(x,y)=4y2˜uμμ(μ,η)+4y˜uμη(μ,η)+˜uηη(μ,η)+2˜uμ(μ,η).
Therefore, the partial differential equation becomes˜uηη(μ,η)=6η,
which implies ˜uη(μ,η)=3η2+F(μ), and hence ˜u(μ,η)=η3+F(μ)η+G(μ) for some F,G∈C2(R). Therefore, we obtainu(x,y)=y3+F(2x+y2)y+G(2x+y2).
- Show that the function
u(x,y)={0if x≤y(x−y)2if x>y
satisfies uxx−uyy=0 for all x≠y. Is u∈C1(R2)? Where does u fail to be C2? - Show that the minimal surface equation (1+u2y)uxx−2uxuyuxy+(1+u2x)uyy=0 is everywhere elliptic.
- Show that the Monge-Ampère equation uxxuyy−u2xy=f(x) is elliptic for a solution u exactly when f(x)>0. [In this case the graph of u(x,y) is convex.]
- Reduce to the form (22) and solve the initial value problem
→ut+(−4−635)→ux=(1−1),→u(x,0)=(x0).
- Reduce the following systems to the form (22).
- {ut+vx=uvt+ux=v
- {ut+vx=uvt+ux=0
- Let →w=(uv) and A=(0110). The linear first order system of partial differential equations can be represented as →wt+A→wx=→w. It is clear that A has two distinct eigenvalues 1 and −1 and the associated eigenvectors (11) and (1−1), respectively. Thus, we set Γ=(111−1) and Λ=(100−1) and obtain
A=ΓΛΓ−1=(111−1)(100−1)(111−1)−1.
Define →z=Γ−1→w. Then it is easy to verify that→zt+Λ→zx=Γ−1→wt+ΛΓ−1→wx=Γ−1(→wt+A→wx)=Γ−1→w=→z,
which shows the system can be decoupled. - Let →z=Γ−1→w=(111−1)−1(uv) and Λ=(100−1). Then we find
→zt+Λ→zx=Γ−1→wt+ΛΓ−1→wx=Γ−1(→wt+A→wx)=Γ−1(u0),
which cannot be decounpled.
Note that this system can be reduced in term of function v as follows. Note that vtt=−utx by differentiating the second equation with respect to t. Then the first equation gives utx+vxx=ux, which implies−vtt+vxx=−vt,
which is hyperbolic. - Solve (26), (27) under the condition (29) [by solving (30), (31)].
- Solve the wave equation uxx−uyy=0 with initial conditions u(x,0)=g(x), uy(x,0)=h(x) by using a 3×3 system of first-order equations.
- If auxx+2buxy+cuyy=d is elliptic (i.e., ac−b2>0), let W=√ac−b2. Show that solutions μ, η of the Beltrami equations
μx=bηx+cηyWandμy=−aηx+bηyW
provide new coordinates transforming (7) to the form (14). [Note that μ(x,y)=∫γμxdx+μydy, where γ is a path joining (x,y) and a fixed point p0; path independence is provided by the Beltrami equations.]
Solution
Solution
Solution
It is clear thatux(x,y)={0if x<y;2(x−y)if x>y,anduy(x,y)={0if x<y;−2(x−y)if x>y.
Now we consider the case that x=y. Note thatlimh→0+u(a+h,a)−u(a,a)h=limh→0+h2−0h=0=limh→0−0−0h=limh→0−u(a+h,a)−u(a,a)h,limh→0+u(a,a+h)−u(a,a)h=limh→0+0−0h=0=limh→0−(−h)2−0h=limh→0−u(a,a+h)−u(a,a)h.
This implies ux(a,a)=uy(a,a)=0 for any a∈R. Therefore, we haveux(x,y)={0if x≤y;2(x−y)if x>y,anduy(x,y)={0if x≤y;−2(x−y)if x>y.
This shows u∈C1(R2). Moreover, we compute the second order partial derivatives as follows. It is clear thatuxx(x,y)={0if x<y;2if x>y,anduyy(x,y)={0if x<y;2if x>y.
Now we consider the case that x=y. Note thatlimh→0+ux(a+h,a)−ux(a,a)h=limh→0+2h−0h=2≠0=limh→0−0−0h=limh→0−ux(a+h,a)−ux(a,a)h,limh→0+uy(a,a+h)−uy(a,a)h=limh→0+0−0h=0≠2=limh→0−−2(−h)−0h=limh→0−uy(a,a+h)−uy(a,a)h.
Therefore, uxx(a,a) and uyy(a,a) does not exist for any a∈R, and u∈C2({(x,y)∈R2:y≠x}). u is not C2 on the set {(x,y)∈R2:y=x}. Clearly, uxx−uyy=0 for all x≠y.Solution
Let F:R6→R be defined byF(z,p,q,r,s,t)=(1+q2)r−2pqs+(1+q2)tfor (z,p,q,r,s,t)∈R6.
Then leta(u,ux,uy,uxx,uxy,uyy)=Fr(u,ux,uy,uxx,uxy,uyy)=1+u2y,b(u,ux,uy,uxx,uxy,uyy)=Fs(u,ux,uy,uxx,uxy,uyy)=−2uxuy,c(u,ux,uy,uxx,uxy,uyy)=Ft(u,ux,uy,uxx,uxy,uyy)=1+u2x.
Because b2−4ac=4u2xu2y−4(1+u2y)(1+u2x)=−4−4(u2x(x,y)+u2y(x,y))≤−4<0 for any (x,y)∈R2, the minimal surface equation is everywhere elliptic.Solution
Let F:R4→R defined byF(x,r,s,t)=rt−s2−f(x)for (x,r,s,t)∈R4.
Then leta(u,ux,uy,uxx,uxy,uyy)=Fr(u,ux,uy,uxx,uxy,uyy)=uyy,b(u,ux,uy,uxx,uxy,uyy)=Fs(u,ux,uy,uxx,uxy,uyy)=−2uxy,c(u,ux,uy,uxx,uxy,uyy)=Ft(u,ux,uy,uxx,uxy,uyy)=uxx.
For x satisfying f(x)>0, we have b2−4ac=4u2xy−4uxxuyy=−4f(x)<0. This means the Monge-Ampère equation is elliptic on the set {(x,y)∈R2:f(x)<0}.Solution
Let A=(−4−635). Then the characteristic polynomial ischA(x)=det(xI−A)=|x+46−3x−5|=(x+4)(x−5)+18=x2−x−2=(x−2)(x+1).
Thus, the eigenvalues of matrix A are −1 and 2. Clearly, the associated eigenvectors are (−21) and (1−1), respectively. Let Γ=(−211−1) and Λ=(−1002). Then A=Γ−1ΛΓ. Define (v(1)v(2))=→v=Γ−1→u. Then equation with its initial condition beceoms→vt+Λ→vx=Γ−1(1−1)=(01)with→v(x,0)=Γ−1→u(x,0)=(−x−x),
which means {v(1)t−v(1)x=0v(1)(x,0)=−x and {v(2)t+2v(2)x=1v(2)(x,0)=−x. Fix x0∈R. Definez(1)(s)=v(1)(x0−s,s) and z(2)(s)=v(2)(x0+2s,s) for s∈R.
It is clear thatdz(1)ds=v(1)t(x0+s,−s)−v(1)x(x0+s,s)=0,dz(2)ds=v(2)t(x0+2s,s)+2v(2)x(x0+2s,s)=1.
It follows thatz(1)(s)=z(1)(0)=v(2)(x0,0)=−x0 and z(2)(s)=z(2)(0)+s=v(2)(x0,0)+s=−x0+s.
Hence, we getv(1)(x,t)=−x−t,v(2)(x,t)=−x+3t.
Therefore, we obtain the solution→u=Γ→v=(−211−1)(−x−t−x+3t)=(1+5t−4t).
Solution
Solution
Based on the reduction in the textbook, the equations (30) and (31) can be read as{v(1)t+1√LCv(1)x=−RC+GL2LCv(1)=−RLv(1),v(1)(x,0)=12√LC[I0(x)√L+V0(x)√C],and{v(2)t−1√LCv(2)x=−RC+GL2LCv(2)=−RLv(2),v(2)(x,0)=12√LC[I0(x)√L−V0(x)√C],
where G, C, R and L are all positive constants with RC=GL.Fix x0∈R. By the method of characteristic line, we let
z(1)(s)=v(1)(x0+s/√LC,s) and z(2)(s)=v(2)(x0−s/√LC,s) for s∈R.
Then it is clear thatdz(1)ds=v(1)t(x0+s/√LC,s)+1√LCv(1)x(x0+s/√LC,s)=−RLv(1)(x0+s/√LC,s)=−RLz(1),dz(2)ds=v(2)t(x0−s/√LC,s)−1√LCv(2)x(x0−s/√LC,s)=−RLv(2)(x0−s/√LC,s)=−RLz(2).
Thus, we obtainz(1)(s)=z(1)(0)exp(−Rs/L)=I0(x0)√L+V0(x0)√C2√LCexp(−Rs/L),z(2)(s)=z(2)(0)exp(−Rs/L)=I0(x0)√L−V0(x0)√C2√LCexp(−Rs/L).
Therefore, we obtainv(1)(x,t)=I0(x−t/√LC)√L+V0(x−t/√LC)√C2√LCexp(−Rt/L),v(2)(x,t)=I0(x+t/√LC)√L−V0(x+t/√LC)√C2√LCexp(−Rt/L),
and the solution is→u=Γ→v=(√C√C√L−√L)(I0(x−t/√LC)√L+V0(x−t/√LC)√C2√LCexp(−Rt/L)I0(x+t/√LC)√L−V0(x+t/√LC)√C2√LCexp(−Rt/L))=exp(−Rt/L)2√LC(√C√C√L−√L)(I0(x−t/√LC)√L+V0(x−t/√LC)√CI0(x+t/√LC)√L−V0(x+t/√LC)√C)=exp(−Rt/L)2(I0(x−t/√LC)+I0(x+t/√LC)+√C√LV0(x−t/√LC)+√C√LV0(x+t/√LC)V0(x−t/√LC)+V0(x+t/√LC)+√L√CI0(x−t/√LC)−√L√CI0(x+t/√LC)).
Solution
Let →v=(uuxuy). Then by the wave equation uxx−uyy=0, →v satisfies→vx+A→vy=(ux00),
where A=(00000−10−10). It is easy to find the eigenvalues of A are 1, −1 and 0 and the associated eigenvectors are (01−1), (011) and (100), respectively. Thus, we putΓ=(001110−110),Λ=(1000−10000).
Note that A=ΓΛΓ−1. Then we define →w=Γ−1→v so →w=(w(1)w(2)w(3)) satisfies→wx+Λ→wy=Γ−1→vx+ΛΓ−1→vy=Γ−1(→vx+A→vy)=Γ−1(ux00)=(01/2−1/201/21/2100)(ux00)=(00ux).
Moreover, the initial condition→w(x,0)=Γ−1→v(x,0)=(u(x,0)ux(x,0)uy(x,0))=(01/2−1/201/21/2100)(g(x)g′(x)h(x))=((g′(x)−h(x))/2(g′(x)+h(x))/2g(x))
From the first two equations, we have{w(1)x+w(1)y=0w(1)(x,0)=(g′(x)−h(x))/2and{w(2)x−w(2)y=0w(2)(x,0)=(g′(x)+h(x))/2
By the method of characteristic lines, we obtainw(1)(x,y)=g′(x−y)−h(x−y)2,w(2)(x,y)=g′(x+y)+h(x+y)2.
By →u=Γ→w, we haveux(x,y)+uy(x,y)=w(1)(x,y),−ux(x,y)+uy(x,y)=w(2)(x,y),
which givesux(x,y)=w(1)(x,y)+w(2)(x,y)2=g′(x−y)+g′(x+y)−h(x−y)+h(x+y)4,uy(x,y)=w(1)(x,y)−w(2)(x,y)2=g′(x−y)−g′(x+y)−h(x−y)−h(x+y)2.
Integrating uy with respect to y yieldsu(x,y)=g(x+y)+g(x−y)2+12∫y−yh(x+τ)dτ+s(x).
Then differentiating u with respect to x, we obtainux(x,y)=g′(x+y)+g′(x−y)2+∫y−yh′(x+τ)dτ+s′(x)=g(x+y)+g(x−y)+h(x+y)−h(x−y)2+s′(x),
which implies s′(x)=0. Therefore, we obtain the solutionu(x,y)=g(x+y)+g(x−y)2+12∫y−yh(x+τ)dτ+C.
Due to the initial condition, we get C=0 andu(x,y)=g(x+y)+g(x−y)2+12∫y−yh(x+τ)dτ.
Solution
Define ˜u(μ,η)=u(x,y), where μ=μ(x,y) and η=η(x,y) are the solution of Beltrami equations. Using the chain rule, we haveux(x,y)=˜uμ(μ,η)μx+˜uη(μ,η)ηx,uy(x,y)=˜uμ(μ,η)μy+˜uη(μ,η)ηy.
Moreover, we compute the second order partial derivatives:uxx(x,y)=˜uμμ(μ,η)μ2x+2˜uμη(μ,η)μxηx+˜uηη(μ,η)η2x+˜uμ(μ,η)μxx+˜uη(μ,η)ηxx,uxy(x,y)=˜uμμ(μ,η)μxμy+˜uμη(μ,η)(μxηy+ηxμy)+˜uηη(μ,η)ηxηy+˜uμ(μ,η)μxy+˜uη(μ,η)ηxy,uyy(x,y)=˜uμμ(μ,η)μ2y+2˜uμη(μ,η)μyηy+˜uηη(μ,η)η2y+˜uμ(μ,η)μyy+˜uη(μ,η)ηyy.
Plugging into the elliptic partial differential equation, we obtaind=auxx(x,y)+2buxy(x,y)+cuyy(x,y)=a[˜uμμ(μ,η)μ2x+2˜uμη(μ,η)μxηx+˜uηη(μ,η)η2x+˜uμ(μ,η)μxx+˜uη(μ,η)ηxx]+2b[˜uμμ(μ,η)μxμy+˜uμη(μ,η)(μxηy+ηxμy)+˜uηη(μ,η)ηxηy+˜uμ(μ,η)μxy+˜uη(μ,η)ηxy]+c[˜uμμ(μ,η)μ2y+2˜uμη(μ,η)μyηy+˜uηη(μ,η)η2y+˜uμ(μ,η)μyy+˜uη(μ,η)ηyy]=(aμ2x+2bμxμy+cμ2y)˜uμμ(μ,η)+(2aμxηx+2bμxηy+2bμyηx+2cμyηy)˜uμη(μ,η)+(aη2x+2bηxηy+cη2y)˜uηη(μ,η)+(aμxx+2bμxy+cμyy)˜uμ(μ,η)+(aηxx+2bηxy+cηyy)˜uη(μ,η).
Now we need to compute the coefficients of ˜uμμ, ˜uμη, ˜uηη, ˜uμ and ˜uη. A simple calculation givesaμ2x+2bμxμy+cμ2y=a(bηx+cηy)2−2b(bηx+cηy)(aηx+bηy)+c(aηx+bηy)2W2=(ab2−2ab2+ca2)η2x+(2abc−2abc−2b3+2abc)ηxηy+(ac2−2b2c+b2c)η2yW2=a(ac−b2)η2x+2b(ac−b2)ηxηy+c(ac−b2)η2yW2=aη2x+2bηxηy+cη2y,2aμxηx+2bμxηy+2bμyηx+2cμyηy=2a(bηx+cηy)ηx+2b(bηx+cηy)ηy−2b(aηx+bηy)ηx−2c(aηx+bηy)ηyW=0aμxx+2bμxy+cμyy=a(bηxx+cηxy)+2b(bηxy+cηyy)−c(aηxy+bηyy)W=abηxx+2b2ηxy+bcηyyW=bW(aηxx+2bηxy+cηyy).
In addition, by μxy=μyx, we can get aηxx+2bηxy+cηyy=0. Therefore, we obtain˜uμμ(μ,η)+˜uηη(μ,η)=daμ2x+2bμxμy+cμ2y.
沒有留言:
張貼留言