Processing math: 100%

2024年1月14日 星期日

Solution to Partial Differential Equations: Methods and Applications (Robert McOwen) Section 2.2

Solution to Partial Differential Equations: Methods and Applications (Robert McOwen) Section 2.2

  1. Reduce to canonical form:
    1. uxx+5uxy+6uyy=0
    2. x2uxxy2uyy=0
  2. Solution
    1. This equation can be written as auxx+buxy+cuyy=0, where a=1, b=5 and c=6. Then by equation (10), we have

      dydx=b±b24ac2a=5±25242=5±12=2 or 3,

      which implies y=2x+C1 and y=3x+C2 are the characteristics, and the PDE is hyperbolic on the whole plane R2. Let μ(x,y)=y2x and η(x,y)=y3x. Then we define ˜u:R2R by ˜u(μ,η)=u(x,y)=u(μη,3μ2η) for (μ,η)R2. It is easy to verify that

      ˜uμη(μ,η)=μη˜u(μ,η)=μ[ux(μη,3μ2η)(1)+uy(μη,3μ2η)(2)]=[uxx(μη,3μ2η)3uxy(μη,3μ2η)]+[2uyx(μη,3μ2η)6uyy(μη,3μ2η)]=0.

      This gives ˜uμη(μ,η)=0.
    2. This equation can be written as a(x,y)uxx+b(x,y)uxy+c(x,y)uyy=0, where a(x,y)=x2, b(x,y)=0 and c(x,y)=y2. Then by equation (10), we have

      dydx=b±b24ac2a=0±0+4x2y22x2=±yx,

      which implies y=C1x and xy=C2. Let μ(x,y)=y/x and η(x,y)=xy. Then we define ˜u(η,μ)=u(x,y) for (x,y) and (μ,η) in some suitable domain. A direct computation gives

      ux(x,y)=˜uμ(μ,η)μx+˜uη(μ,η)ηx=yx2˜uμ(μ,η)+y˜uη(μ,η),uy(x,y)=˜uμ(μ,η)μy+˜uη(μ,η)ηy=1x˜uμ(μ,η)+x˜uη(μ,η).

      Moreover, we get the second order partial derivatives

      uxx(x,y)=y2x4˜uμμ(μ,η)2y2x2˜uμη(μ,η)+y2˜uηη(μ,η)+2yx3˜uμ(μ,η),uyy(x,y)=1x2˜uμμ(μ,η)+2˜uμη(μ,η)+x2˜uηη(μ,η)

      Thus, the equation becomes

      0=x2uxx(x,y)y2uyy(x,y)=(yx)2˜uμμ(μ,η)2y2˜uμη(μ,η)+(xy)2˜uηη(μ,η)+2yx˜uμ(μ,η)(yx)2˜uμμ(μ,η)2y2˜uμη(μ,η)(xy)2˜uηη(μ,η)=4y2˜uμη(μ,η)+2yx˜uμ(μ,η)=4μη˜uμη(μ,η)+2μ˜uμ(μ,η),

      which means ˜uμη(μ,η)=12η˜uμ(μ,η).

  3. Find the general solution:
    1. uxx2uxysinxuyycos2xuycosx=0
    2. y2uxx2yuxy+uyy=ux+6y
  4. Solution
    1. The principal part of equation can be denoted by the principal symbol

      σ(ξ)=σ(x,y;ξ)=ξ21+(2sinx)ξ1ξ2+(cos2x)ξ22.

      Then by (10), we have

      dydx=2sinx±4sin2x41(cos2x)2=sinx±1,

      which gives y=cosx±x+C. Let μ(x,y)=ycosx+x and η(x,y)=ycosxx. Then we define ˜u(μ,η)=u(x,y). A simple computation gives

      ux(x,y)=˜uμ(μ,η)μx+˜uη(μ,η)ηx=(sinx+1)˜uμ(μ,η)+(sinx1)˜uη(μ,η),uy(x,y)=˜uμ(μ,η)μy+˜uη(μ,η)ηy=˜uμ(μ,η)+˜uη(μ,η).

      Moreover, we get the second order partial derivaitves

      uxx(x,y)=(sinx+1)2˜uμμ(μ,η)(2cos2x)˜uμη(μ,η)+(sinx1)2˜uηη(μ,η)+(cosx)˜uμ(μ,η)+(cosx)˜uη(μ,η),uxy(x,y)=(sinx+1)˜uμμ(μ,η)+(2sinx)˜uμη(μ,η)+(sinx1)˜uηη(μ,η),uyy(x,y)=˜uμμ(μ,η)+2˜uμη(μ,η)+˜uηη(μ,η).

      Therefore, the partial differential equation becomes

      ˜uμη(μ,η)=0,

      which can be solved by ˜u(μ,η)=F(μ)+G(η) for some F,GC2(R). Therefore, we obtain

      u(x,y)=F(ycosx+x)+G(ycosxx).

    2. The principal part of equation can be denoted by the principal symbol

      σ(ξ)=σ(x,y;ξ)=y2ξ212yξ1ξ2+ξ22.

      Then by (10), we have

      dydx=2y±4y24y212y2=1y,

      which gives 2x+y2=C. Let μ(x,y)=2x+y2 and η(x,y)=y. Then we define ˜u(μ,η)=u(x,y). A simple computation gives

      ux(x,y)=˜uμ(μ,η)μx+˜uη(μ,η)ηx=2˜uμ(μ,η),uy(x,y)=˜uμ(μ,η)μy+˜uη(μ,η)ηy=2y˜uμ(μ,η)+˜uη(μ,η).

      Moreover, we get the second order partial derivatives

      uxx(x,y)=4˜uμμ(μ,η),uxy(x,y)=8y˜uμμ(μ,η)+2˜uμη(μ,η),uyy(x,y)=4y2˜uμμ(μ,η)+4y˜uμη(μ,η)+˜uηη(μ,η)+2˜uμ(μ,η).

      Therefore, the partial differential equation becomes

      ˜uηη(μ,η)=6η,

      which implies ˜uη(μ,η)=3η2+F(μ), and hence ˜u(μ,η)=η3+F(μ)η+G(μ) for some F,GC2(R). Therefore, we obtain

      u(x,y)=y3+F(2x+y2)y+G(2x+y2).


  5. Show that the function

    u(x,y)={0if xy(xy)2if x>y

    satisfies uxxuyy=0 for all xy. Is uC1(R2)? Where does u fail to be C2?
  6. SolutionIt is clear that

    ux(x,y)={0if x<y;2(xy)if x>y,anduy(x,y)={0if x<y;2(xy)if x>y.

    Now we consider the case that x=y. Note that

    limh0+u(a+h,a)u(a,a)h=limh0+h20h=0=limh000h=limh0u(a+h,a)u(a,a)h,limh0+u(a,a+h)u(a,a)h=limh0+00h=0=limh0(h)20h=limh0u(a,a+h)u(a,a)h.

    This implies ux(a,a)=uy(a,a)=0 for any aR. Therefore, we have

    ux(x,y)={0if xy;2(xy)if x>y,anduy(x,y)={0if xy;2(xy)if x>y.

    This shows uC1(R2). Moreover, we compute the second order partial derivatives as follows. It is clear that

    uxx(x,y)={0if x<y;2if x>y,anduyy(x,y)={0if x<y;2if x>y.

    Now we consider the case that x=y. Note that

    limh0+ux(a+h,a)ux(a,a)h=limh0+2h0h=20=limh000h=limh0ux(a+h,a)ux(a,a)h,limh0+uy(a,a+h)uy(a,a)h=limh0+00h=02=limh02(h)0h=limh0uy(a,a+h)uy(a,a)h.

    Therefore, uxx(a,a) and uyy(a,a) does not exist for any aR, and uC2({(x,y)R2:yx}). u is not C2 on the set {(x,y)R2:y=x}. Clearly, uxxuyy=0 for all xy.

  7. Show that the minimal surface equation (1+u2y)uxx2uxuyuxy+(1+u2x)uyy=0 is everywhere elliptic.
  8. SolutionLet F:R6R be defined by

    F(z,p,q,r,s,t)=(1+q2)r2pqs+(1+q2)tfor (z,p,q,r,s,t)R6.

    Then let

    a(u,ux,uy,uxx,uxy,uyy)=Fr(u,ux,uy,uxx,uxy,uyy)=1+u2y,b(u,ux,uy,uxx,uxy,uyy)=Fs(u,ux,uy,uxx,uxy,uyy)=2uxuy,c(u,ux,uy,uxx,uxy,uyy)=Ft(u,ux,uy,uxx,uxy,uyy)=1+u2x.

    Because b24ac=4u2xu2y4(1+u2y)(1+u2x)=44(u2x(x,y)+u2y(x,y))4<0 for any (x,y)R2, the minimal surface equation is everywhere elliptic.

  9. Show that the Monge-Ampère equation uxxuyyu2xy=f(x) is elliptic for a solution u exactly when f(x)>0. [In this case the graph of u(x,y) is convex.]
  10. SolutionLet F:R4R defined by

    F(x,r,s,t)=rts2f(x)for (x,r,s,t)R4.

    Then let

    a(u,ux,uy,uxx,uxy,uyy)=Fr(u,ux,uy,uxx,uxy,uyy)=uyy,b(u,ux,uy,uxx,uxy,uyy)=Fs(u,ux,uy,uxx,uxy,uyy)=2uxy,c(u,ux,uy,uxx,uxy,uyy)=Ft(u,ux,uy,uxx,uxy,uyy)=uxx.

    For x satisfying f(x)>0, we have b24ac=4u2xy4uxxuyy=4f(x)<0. This means the Monge-Ampère equation is elliptic on the set {(x,y)R2:f(x)<0}.

  11. Reduce to the form (22) and solve the initial value problem

    ut+(4635)ux=(11),u(x,0)=(x0).

  12. SolutionLet A=(4635). Then the characteristic polynomial is

    chA(x)=det(xIA)=|x+463x5|=(x+4)(x5)+18=x2x2=(x2)(x+1).

    Thus, the eigenvalues of matrix A are 1 and 2. Clearly, the associated eigenvectors are (21) and (11), respectively. Let Γ=(2111) and Λ=(1002). Then A=Γ1ΛΓ. Define (v(1)v(2))=v=Γ1u. Then equation with its initial condition beceoms

    vt+Λvx=Γ1(11)=(01)withv(x,0)=Γ1u(x,0)=(xx),

    which means {v(1)tv(1)x=0v(1)(x,0)=x and {v(2)t+2v(2)x=1v(2)(x,0)=x. Fix x0R. Define

    z(1)(s)=v(1)(x0s,s) and z(2)(s)=v(2)(x0+2s,s) for sR.

    It is clear that

    dz(1)ds=v(1)t(x0+s,s)v(1)x(x0+s,s)=0,dz(2)ds=v(2)t(x0+2s,s)+2v(2)x(x0+2s,s)=1.

    It follows that

    z(1)(s)=z(1)(0)=v(2)(x0,0)=x0 and z(2)(s)=z(2)(0)+s=v(2)(x0,0)+s=x0+s.

    Hence, we get

    v(1)(x,t)=xt,v(2)(x,t)=x+3t.

    Therefore, we obtain the solution

    u=Γv=(2111)(xtx+3t)=(1+5t4t).


  13. Reduce the following systems to the form (22).
    1. {ut+vx=uvt+ux=v
    2. {ut+vx=uvt+ux=0
    Do they both decouple?
  14. Solution
    1. Let w=(uv) and A=(0110). The linear first order system of partial differential equations can be represented as wt+Awx=w. It is clear that A has two distinct eigenvalues 1 and 1 and the associated eigenvectors (11) and (11), respectively. Thus, we set Γ=(1111) and Λ=(1001) and obtain

      A=ΓΛΓ1=(1111)(1001)(1111)1.

      Define z=Γ1w. Then it is easy to verify that

      zt+Λzx=Γ1wt+ΛΓ1wx=Γ1(wt+Awx)=Γ1w=z,

      which shows the system can be decoupled.
    2. Let z=Γ1w=(1111)1(uv) and Λ=(1001). Then we find

      zt+Λzx=Γ1wt+ΛΓ1wx=Γ1(wt+Awx)=Γ1(u0),

      which cannot be decounpled.

      Note that this system can be reduced in term of function v as follows. Note that vtt=utx by differentiating the second equation with respect to t. Then the first equation gives utx+vxx=ux, which implies

      vtt+vxx=vt,

      which is hyperbolic.

  15. Solve (26), (27) under the condition (29) [by solving (30), (31)].
  16. SolutionBased on the reduction in the textbook, the equations (30) and (31) can be read as

    {v(1)t+1LCv(1)x=RC+GL2LCv(1)=RLv(1),v(1)(x,0)=12LC[I0(x)L+V0(x)C],and{v(2)t1LCv(2)x=RC+GL2LCv(2)=RLv(2),v(2)(x,0)=12LC[I0(x)LV0(x)C],

    where G, C, R and L are all positive constants with RC=GL.

    Fix x0R. By the method of characteristic line, we let

    z(1)(s)=v(1)(x0+s/LC,s) and z(2)(s)=v(2)(x0s/LC,s) for sR.

    Then it is clear that

    dz(1)ds=v(1)t(x0+s/LC,s)+1LCv(1)x(x0+s/LC,s)=RLv(1)(x0+s/LC,s)=RLz(1),dz(2)ds=v(2)t(x0s/LC,s)1LCv(2)x(x0s/LC,s)=RLv(2)(x0s/LC,s)=RLz(2).

    Thus, we obtain

    z(1)(s)=z(1)(0)exp(Rs/L)=I0(x0)L+V0(x0)C2LCexp(Rs/L),z(2)(s)=z(2)(0)exp(Rs/L)=I0(x0)LV0(x0)C2LCexp(Rs/L).

    Therefore, we obtain

    v(1)(x,t)=I0(xt/LC)L+V0(xt/LC)C2LCexp(Rt/L),v(2)(x,t)=I0(x+t/LC)LV0(x+t/LC)C2LCexp(Rt/L),

    and the solution is

    u=Γv=(CCLL)(I0(xt/LC)L+V0(xt/LC)C2LCexp(Rt/L)I0(x+t/LC)LV0(x+t/LC)C2LCexp(Rt/L))=exp(Rt/L)2LC(CCLL)(I0(xt/LC)L+V0(xt/LC)CI0(x+t/LC)LV0(x+t/LC)C)=exp(Rt/L)2(I0(xt/LC)+I0(x+t/LC)+CLV0(xt/LC)+CLV0(x+t/LC)V0(xt/LC)+V0(x+t/LC)+LCI0(xt/LC)LCI0(x+t/LC)).


  17. Solve the wave equation uxxuyy=0 with initial conditions u(x,0)=g(x), uy(x,0)=h(x) by using a 3×3 system of first-order equations.
  18. SolutionLet v=(uuxuy). Then by the wave equation uxxuyy=0, v satisfies

    vx+Avy=(ux00),

    where A=(000001010). It is easy to find the eigenvalues of A are 1, 1 and 0 and the associated eigenvectors are (011), (011) and (100), respectively. Thus, we put

    Γ=(001110110),Λ=(100010000).

    Note that A=ΓΛΓ1. Then we define w=Γ1v so w=(w(1)w(2)w(3)) satisfies

    wx+Λwy=Γ1vx+ΛΓ1vy=Γ1(vx+Avy)=Γ1(ux00)=(01/21/201/21/2100)(ux00)=(00ux).

    Moreover, the initial condition

    w(x,0)=Γ1v(x,0)=(u(x,0)ux(x,0)uy(x,0))=(01/21/201/21/2100)(g(x)g(x)h(x))=((g(x)h(x))/2(g(x)+h(x))/2g(x))

    From the first two equations, we have

    {w(1)x+w(1)y=0w(1)(x,0)=(g(x)h(x))/2and{w(2)xw(2)y=0w(2)(x,0)=(g(x)+h(x))/2

    By the method of characteristic lines, we obtain

    w(1)(x,y)=g(xy)h(xy)2,w(2)(x,y)=g(x+y)+h(x+y)2.

    By u=Γw, we have

    ux(x,y)+uy(x,y)=w(1)(x,y),ux(x,y)+uy(x,y)=w(2)(x,y),

    which gives

    ux(x,y)=w(1)(x,y)+w(2)(x,y)2=g(xy)+g(x+y)h(xy)+h(x+y)4,uy(x,y)=w(1)(x,y)w(2)(x,y)2=g(xy)g(x+y)h(xy)h(x+y)2.

    Integrating uy with respect to y yields

    u(x,y)=g(x+y)+g(xy)2+12yyh(x+τ)dτ+s(x).

    Then differentiating u with respect to x, we obtain

    ux(x,y)=g(x+y)+g(xy)2+yyh(x+τ)dτ+s(x)=g(x+y)+g(xy)+h(x+y)h(xy)2+s(x),

    which implies s(x)=0. Therefore, we obtain the solution

    u(x,y)=g(x+y)+g(xy)2+12yyh(x+τ)dτ+C.

    Due to the initial condition, we get C=0 and

    u(x,y)=g(x+y)+g(xy)2+12yyh(x+τ)dτ.


  19. If auxx+2buxy+cuyy=d is elliptic (i.e., acb2>0), let W=acb2. Show that solutions μ, η of the Beltrami equations

    μx=bηx+cηyWandμy=aηx+bηyW

    provide new coordinates transforming (7) to the form (14). [Note that μ(x,y)=γμxdx+μydy, where γ is a path joining (x,y) and a fixed point p0; path independence is provided by the Beltrami equations.]
  20. SolutionDefine ˜u(μ,η)=u(x,y), where μ=μ(x,y) and η=η(x,y) are the solution of Beltrami equations. Using the chain rule, we have

    ux(x,y)=˜uμ(μ,η)μx+˜uη(μ,η)ηx,uy(x,y)=˜uμ(μ,η)μy+˜uη(μ,η)ηy.

    Moreover, we compute the second order partial derivatives:

    uxx(x,y)=˜uμμ(μ,η)μ2x+2˜uμη(μ,η)μxηx+˜uηη(μ,η)η2x+˜uμ(μ,η)μxx+˜uη(μ,η)ηxx,uxy(x,y)=˜uμμ(μ,η)μxμy+˜uμη(μ,η)(μxηy+ηxμy)+˜uηη(μ,η)ηxηy+˜uμ(μ,η)μxy+˜uη(μ,η)ηxy,uyy(x,y)=˜uμμ(μ,η)μ2y+2˜uμη(μ,η)μyηy+˜uηη(μ,η)η2y+˜uμ(μ,η)μyy+˜uη(μ,η)ηyy.

    Plugging into the elliptic partial differential equation, we obtain

    d=auxx(x,y)+2buxy(x,y)+cuyy(x,y)=a[˜uμμ(μ,η)μ2x+2˜uμη(μ,η)μxηx+˜uηη(μ,η)η2x+˜uμ(μ,η)μxx+˜uη(μ,η)ηxx]+2b[˜uμμ(μ,η)μxμy+˜uμη(μ,η)(μxηy+ηxμy)+˜uηη(μ,η)ηxηy+˜uμ(μ,η)μxy+˜uη(μ,η)ηxy]+c[˜uμμ(μ,η)μ2y+2˜uμη(μ,η)μyηy+˜uηη(μ,η)η2y+˜uμ(μ,η)μyy+˜uη(μ,η)ηyy]=(aμ2x+2bμxμy+cμ2y)˜uμμ(μ,η)+(2aμxηx+2bμxηy+2bμyηx+2cμyηy)˜uμη(μ,η)+(aη2x+2bηxηy+cη2y)˜uηη(μ,η)+(aμxx+2bμxy+cμyy)˜uμ(μ,η)+(aηxx+2bηxy+cηyy)˜uη(μ,η).

    Now we need to compute the coefficients of ˜uμμ, ˜uμη, ˜uηη, ˜uμ and ˜uη. A simple calculation gives

    aμ2x+2bμxμy+cμ2y=a(bηx+cηy)22b(bηx+cηy)(aηx+bηy)+c(aηx+bηy)2W2=(ab22ab2+ca2)η2x+(2abc2abc2b3+2abc)ηxηy+(ac22b2c+b2c)η2yW2=a(acb2)η2x+2b(acb2)ηxηy+c(acb2)η2yW2=aη2x+2bηxηy+cη2y,2aμxηx+2bμxηy+2bμyηx+2cμyηy=2a(bηx+cηy)ηx+2b(bηx+cηy)ηy2b(aηx+bηy)ηx2c(aηx+bηy)ηyW=0aμxx+2bμxy+cμyy=a(bηxx+cηxy)+2b(bηxy+cηyy)c(aηxy+bηyy)W=abηxx+2b2ηxy+bcηyyW=bW(aηxx+2bηxy+cηyy).

    In addition, by μxy=μyx, we can get aηxx+2bηxy+cηyy=0. Therefore, we obtain

    ˜uμμ(μ,η)+˜uηη(μ,η)=daμ2x+2bμxμy+cμ2y.

沒有留言:

張貼留言