Solution to Partial Differential Equations: Methods and Applications (Robert McOwen) Section 3.4
- Find dispersive wave solutions of the n-dimensional linear Klein-Gordon equation utt−c2Δu+m2u=0.
- Show that each of the following linear equations has dispersive wave solutions u=Aexp[i(kx−ωt)]:
- The flexible beam equation utt+γ2uxxxx=0;
- The linearized KdV equation ut+cux+uxxx=0;
- The Boussinesq equation utt−c2uxx=γ2uttxx;
- The Schrödinger equation ut=iΔu.
- Plugging u=Aexp[i(kx−ωt)] into flexible beam equation, we get
utt+γ2uxxxx=Aei(kx−ωt)(−iω)2+γ2⋅Aei(kx−ωt)(ik)4=Aei(kx−ωt)(−ω2+γ2k4)=0,
which gives ω=±γk2. Thus, the dispersive wave solution of the flexible beam equation is given byu(x,t)=Aei(kx−ω(k)t)andω(k)=±γk2.
- Plugging u=Aexp[i(kx−ωt)] into linearized KdV equation, we get
ut+cux+uxxx=Aei(kx−ωt)(−iω)+c⋅Aei(kx−ωt)(ik)+Aei(kx−ωt)(ik)3=−Aiei(kx−ωt)[ω−ck+k3]=0,
which ω=ck−k3. Thus, the dispersive wave solution of the linearized KdV equation is given byu(x,t)=Aei(kx−ω(k)t)andω(k)=ck−k3.
- Plugging u=Aexp[i(kx−ωt)] into Boussinesq equation, we get
utt−c2uxx=Aei(kx−ωt)(−iω)2−c2⋅Aei(kx−ωt)(ik)2=Aei(kx−ωt)(−ω2+c2k2)=Aei(kx−ωt)(γ2ω2k2)=γ2⋅Aei(kx−ωt)(−iω)2(ik)2=γ2uttxx,
which gives ω=±ck√1+γ2k2. Thus, the dispersive wave solution of the Boussinesq equation is given byu(x,t)=Aei(kx−ω(k)t)andω(k)=±ck√1+γ2k2.
- Plugging u=Aexp[i(k⋅x−ωt)] (k=(k1,…,kn) and k⋅x=k1x1+⋯+knxn) into Schrödinger equation, we get
ut=Aei(k⋅x−ωt)(−iω)=Aei(k⋅x−ωt)⋅(−i|k|2)=i⋅Aei(k⋅x−ωt)[(ik1)2+⋯+(ikn)2]=iΔx,
which gives ω=|k|2. Thus, the dispersive wave solution of the Schrödinger equation is given byu(x,t)=Aei(k⋅x−ω(k)t)andω(k)=|k|2.
- Show that the heat equation ut=uxx admits uniform wave solutions of the form (55) in which ω(k) is complex-valued and the wave is exponentially decaying in t. (Such uniform waves are called diffusive. Thus the heat equation is diffusive and not dispersive.)
- Find two uniform wave solutions of (52) with λ>0, satisfying the initial condition u(x,0)=3cos2x.
- Find a condition on g and h that is necessary for the existence of a uniform wave solution of (52) satisfying the initial condition u(x,0)=g(x) and ut(x,0)=h(x).
- Find the solution of the telegrapher's equation utt−uxx+ut+m2u=0 satisfying the initial conditions u(x,0)=g(x) and ut(x,0)=0 where g is an arbitrary C2 function.
- If |m|>1/2, then we denote ˜m=√m2−(1/4)>0 so vtt−vxx+˜m2v=0, which is the linear Klein-Gordon equation. By Solution 3 of Section 3.1, we have
v(x,t)=12π∂∂t(t∫2π0∫10rcos(˜mtrsinθ)g(x+trcosθ)√1−r2drdθ)+t4π∫2π0∫10rcos(˜mtrsinθ)g(x+trcosθ)√1−r2drdθ.
Thus, the solution u of telegrapher's equation isu(x,t)=e−t/22π∂∂t(t∫2π0∫10rcos(tr√m2−(1/4)sinθ)g(x+trcosθ)√1−r2drdθ)+te−t/24π∫2π0∫10rcos(tr√m2−(1/4)sinθ)g(x+trcosθ)√1−r2drdθ.
- If m=±1/2, then v satisfies the wave equation. Then by the d'Alembert's formula (6), we have
v(x,t)=g(x+t)+g(x−t)2+14∫x+tx−tg(ξ)dξ.
Thus, the solution u of telegrapher's equation isu(x,t)=e−t/2(g(x+t)+g(x−t))2+e−t/24∫x+tx−tg(ξ)dξ.
- If |m|<1/2, then we define
w(x,y,t)=exp(y√14−m2)v(x,t)for (x,y,t)∈R2×ˉR+.
Then it is easy to verify thatwtt=exp(y√14−m2)vtt=exp(y√14−m2)[vxx−(m2−14)v)=wxx+wyy.
This means w satisfies the two-dimensional wave equation with the initial conditionw(x,y,0)=exp(y√14−m2)g(x)wt(x,y,0)=12exp(y√14−m2)g(x)for (x,y)∈R2.
Then by the formula (39) in Section 3.2, we obtainw(x,y,t)=12π∂∂t(t∫ξ21+ξ22<1g(x+tξ1)exp[(y+tξ2)√(1/4)−m2]√1−ξ21−ξ22dξ1dξ2)+t4π∫ξ21+ξ22<1g(x+tξ1)exp[(y+tξ2)√(1/4)−m2]√1−ξ21−ξ22dξ1dξ2.
Note that u(x,t)=e−t/2v(x,t)=e−t/2w(x,0,t). Therefore, the solution u of telegrapher's equation isu(x,t)=e−t/22π∂∂t(t∫ξ21+ξ22<1g(x+tξ1)exp[tξ2√(1/4)−m2]√1−ξ21−ξ22dξ1dξ2)+te−t/24π∫ξ21+ξ22<1g(x+tξ1)exp[tξ2√(1/4)−m2]√1−ξ21−ξ22dξ1dξ2=e−t/22π∂∂t(t∫2π0∫10rexp[trsinθ√(1/4)−m2]g(x+trcosθ)√1−r2drdθ)+te−t/24π∫2π0∫10rexp[trsinθ√(1/4)−m2]g(x+trcosθ)√1−r2drdθ.
Solution
Suppose that the dispersive wave solution of the n-dimensional linear Klein-Gordon equaiton is of the form u(x,t)=Aei(k⋅x−ωt) (cf. (55) and Remark at page 96 in the textbook), where k=(k1,…,kn) and k⋅x=k1x1+⋯+knxn. From the linear Klein-Gordon equation, we haveutt−c2Δu+m2u=Aei(k⋅x−ωt)(−iω)2−c2⋅Aei(k⋅x−ωt)[(ik1)2+(ik2)2+⋯+(ikn)2]+m2⋅Aei(k⋅x−ωt)=Aei(k⋅x−ωt)⋅(−ω2+c2|k|2+m2)=0.
Thus, ω2=m2−c2|k|2, i.e., ω(k)=±√c2|k|2+m2. Hence the dispersive wave solutions of the n-dimensional linear Klein-Gordon equaiton is given byu(x,t)=Aei(k⋅x−ω(k)t)andω(k)=±√c2|k|2+m2.
Solution
Solution
Plugging u=Aei(kx−ωt) into the heat equation, we getut=Aei(kx−ωt)(−iω)=Aei(kx−ωt)(ik)2=uxx,
which gives ω=−ik2. Hence the solution of heat equation becomesu(x,t)=Aei(kx+ik2t)=Aeikxe−k2t
Clearly, u decays exponentially to zero in t.Solution
Suppose that u(x,t)=U(kx−ωt) (cf. (53)). Substituting into (52) yields(ω2−k2)U″(kx−ωt)+λU(kx−ωt)=0.
Moreover, suppose that ω2−k2>0. Then we haveU(s)=Acos(s√λ√ω2−k2)+Bsin(s√λ√ω2−k2).
which impliesu(x,t)=Acos((kx−ωt)√λ√ω2−k2)+Bsin((kx−ωt)√λ√ω2−k2).
To meet the initial condition, we assume that A=3 and B=0. Then the solution may simply be expressed asu(x,t)=3cos((kx−ωt)√λ√ω2−k2).
For ω=±k√λ+4/2, we haveu±(x,t)=3cos(2x∓4tk2√λ+4).
Solution
The uniform wave solution of (52) is of the form u(x,t)=U(kx−ωt) (see (53)). Plugging it into the initial condition, we haveg(x)=u(x,0)=U(kx),h(x)=ut(x,0)=−ωU′(kx−ωt)|t=0=−ωU′(kx).
We can differentiate g to findg′(x)=kU′(kx)=kω⋅ωU′(kx)=−kωh(x),
which means ωg′(x)+kh(x)≡0 for x∈R. For (52), it is known that ω(k)=±√k2+λ (see (56)). Thus, the necessary condition on g and h is±√k2+λg′(x)+kh(x)≡0for x∈R.
Solution
Let v(x,t)=et/2u(x,t) for (x,t)∈R×ˉR+. Clearly, we havevt=12et/2u+et/2ut,vtt=14et/2u+et/2ut+et/2utt.
Then v satisfiesvtt−vxx+(m2−14)v=0
with the initial conditions v(x,0)=g(x) and vt(x,0)=g(x)/2 for x∈R.
沒有留言:
張貼留言