- Parametric curve $x=x\left(t\right)$, $y=y\left(t\right)$. When $t=2$, $x\left(2\right)=4$, $x'\left(2\right)=2$, $x''\left(2\right)=5$, $y\left(2\right)=2$, $y'\left(2\right)=2$, $y''\left(2\right)=1$. Find $\displaystyle\frac{d^2y}{dx^2}\left(x=4\right)=$? ($20/100$)
- $\displaystyle\lim_{n\to\infty}\left[\frac n{1+n^2}+\frac n{4+n^2}+\cdots+\frac n{i^2+n^2}+\cdots+\frac n{n^2+n^2}\right]=$? ($20/100$)
- Use Lagrange multiplier or any other method to find the maximum and minimum of $f\left(x,y\right)=x^3+y^3+3xy$ in the closed unit disk $x^2+y^2\leq1$. ($20/100$)
- 若 $\lambda=0$,則有 $3x^2+3y=0$、$3y^2+3x=0$ 且 $x^2+y^2+s^2=1$,由前兩式可得 $x^4+x=0$,故 $x=0$ 或 $x=-1$,但當 $x=-1$ 時有 $y=-1$,從而與 $x^2+y^2+s^2=1$ 矛盾,故僅能有 $x=y=0$,因而 $s=\pm1$,即得 $\left(x,y,s,\lambda\right)=\left(0,0,\pm1,0\right)$。
- 若 $s=0$,則有 $x^2+y^2=1$,因此可設 $x=\cos t$、$y=\sin t$,此時有 $f\left(t\right)=\cos^3t+\sin^3t+3\cos t\sin t$,如此有
$\begin{aligned}f'\left(t\right)&=-3\sin t\cos^2t+3\sin^2t\cos t-3\sin^2t+3\cos^2t\\&=-3\sin t\cos t\left(\cos t-\sin t\right)+3\left(\cos t-\sin t\right)\left(\cos t+\sin t\right)\\&=3\left(\cos t-\sin t\right)\left(\cos t+\sin t-\cos t\sin t\right).\end{aligned}$
- 若 $\cos t=\sin t$,則 $\displaystyle\left(x,y\right)=\pm\left(\frac1{\sqrt2},\frac1{\sqrt2}\right)$。
- 若 $\cos t\sin t=\cos t+\sin t$,那麼平方可知 $\cos^2t\sin^2t=1+2\cos t\sin t$,容易求得 $\cos t\sin t=1\pm\sqrt2$,明顯正號不合,故 $\cos t\sin t=1-\sqrt2$,因此 $\sin2t=2-2\sqrt2$,從而解得 $\displaystyle t=t_0:=\frac12\sin^{-1}\left(2-2\sqrt2\right)$。
- $y=f\left(x\right)$ is an implicit function defined by $x^3+y^3=1$. Find maximum, minimum, inflection points, asymptotes and sketch its graph. ($20/100$)
- Suppose that a bank teller takes an exponentially distributed length of time with mean $\mu=2$ minutes to serve each customer. If there is already one customer waiting in line, what is the probability that you will wait for more than $6$ minutes? ($20/100$)
訣竅
使用連鎖律的概念求解。解法
先求一階導數:$\displaystyle\left.\frac{dy}{dx}\right|_{t=2}=\left.\frac{dy}{dt}\div\frac{dx}{dt}\right|_{t=2}=\frac{y'\left(2\right)}{x'\left(2\right)}=1$.
再求二階導數:$\begin{aligned}\frac{d^2y}{dx^2}\left(x=4\right)&=\left.\frac d{dx}\left(\frac{dy}{dx}\right)\right|_{x=4}=\left.\frac d{dx}\left(\frac{y'\left(t\right)}{x'\left(t\right)}\right)\right|_{t=2}=\left.\frac d{dt}\left(\frac{y'\left(t\right)}{x'\left(t\right)}\right)\right|_{t=2}\div\left.\frac{dx}{dt}\right|_{t=2}\\&=\left.\left(\frac{y''\left(t\right)x'\left(t\right)-x''\left(t\right)y'\left(t\right)}{\left[x'\left(t\right)\right]^2}\cdot\frac1{x'\left(t\right)}\right)\right|_{t=2}=\frac{1\cdot2-5\cdot2}{2^2}\cdot\frac12=-1.\end{aligned}$
訣竅
將 Riemann sum 改為定積分求解。解法
將原式作如下的改寫,並化為定積分計算之:$\begin{aligned}&~~~\lim_{n\to\infty}\left[\frac1n\left(\frac{n^2}{1^2+n^2}+\frac{n^2}{2^2+n^2}+\cdots+\frac{n^2}{n^2+n^2}\right)\right]\\&=\lim_{n\to\infty}\left[\frac1n\left(\frac1{1+\left(1/n\right)^2}+\frac1{1+\left(2/n\right)^2}+\cdots+\frac1{1+\left(n/n\right)^2}\right)\right]\\&=\int_0^1\frac1{1+x^2}\,dx\\&=\arctan x\Big|_0^1=\frac\pi4.\end{aligned}$
訣竅
對限制條件修正後的使用 Lagrange 乘子法。解法
由於 $x^2+y^2\leq1$,故存在 $s\in\mathbb R$ 使 $x^2+y^2+s^2=1$。在此之下設 Lagrange 乘子函數為$F\left(x,y,s,\lambda\right)=x^3+y^3+3xy+\lambda\left(x^2+y^2+s^2-1\right).$
據此解以下聯立方程$\left\{\begin{aligned}&F_x(x,y,s,\lambda)=3x^2+3y+2\lambda x=0,\\&F_y(x,y,s,\lambda)=3y^2+3x+2\lambda y=0,\\&F_s(x,y,s,\lambda)=2s\lambda=0,\\&F_\lambda(x,y,s,\lambda)=x^2+y^2+s^2-1=0.\end{aligned}\right.$
由第三條式子 $s=0$ 或 $\lambda=0$,分別討論之:訣竅
直接表示為顯式,再根據定義求解。解法
易得 $y=\left(1-x^3\right)^{1/3}$,因此$\displaystyle\frac{dy}{dx}=\frac13\left(1-x^3\right)^{-2/3}\cdot\left(-3x^2\right)=-\left(\frac x{\sqrt[3]{1-x^3}}\right)^2$.
令 $y'=0$,可知 $x=0$ 時斜率為零,但此非最大亦非最小值。又繼續微分計算可知
$\begin{aligned}\frac{d^2y}{dx^2}&=-2\left(\frac x{\sqrt[3]{1-x^3}}\right)\cdot\left[\left(1-x^3\right)^{-1/3}-\frac x3\left(1-x^3\right)^{-4/3}\cdot\left(-3x^2\right)\right]\\&=\frac{-2x}{\left(1-x^3\right)^{7/3}}.\end{aligned}$
故解 $y''=0$ 可得 $x=0$,故 $\left(0,1\right)$ 處為反曲點。考察 $y'$ 之分母,若取 $x=1$ 可使之趨於無窮大,但易知此非鉛直漸近線;同時亦可觀察知此圖形無水平漸近線。
又設其斜漸近線為 $y=bx+c$,則由
$\begin{aligned}b&=\lim_{x\to\infty}\frac{dy}{dx}=-\lim_{x\to\infty}\left(\frac x{\sqrt[3]{1-x^3}}\right)^2=-1,\\c&=\lim_{x\to\infty}\left(y-bx\right)=\lim_{x\to\infty}\left(1-x^3\right)^{1/3}+x=\lim_{x\to\infty}\frac1{\left(1-x^3\right)^{2/3}-x\left(1-x^3\right)^{1/3}+x^2}=0.\end{aligned}$
故斜漸近線為 $y=-x$,又此圖形明顯對稱於 $y=x$。最後繪圖如下:訣竅
指數型分配之列式。解法
由 $\mu=2$ 可知$\displaystyle f\left(t\right)=\begin{cases}\displaystyle\frac12e^{-t/2},&t>0\\0 ,&t<0\end{cases}$
按題意求$\displaystyle P\left(t>6\right)=\int_6^\infty f\left(t\right)\,dt=\int_6^\infty\frac12e^{-t/2}\,dt=\left.-e^{-t/2}\right|_6^\infty=e^{-3}.$
請問第4題求漸近線時,c的第二步怎麼求得的?麻煩板主解惑,非常感謝!><
回覆刪除看到順便幫版主回~用a^3-b^3=(a-b)(a^2+ab+b^2),設a=(1-x^3)^(1/3),b=-x,極限=(a^3-b^3)/(a^2+ab+b^2)可看到分子=0~
刪除對,就是這樣><
刪除