※注意:請於試卷上「非選擇題作答區」標明題號並依序作答。
Correctly number each of your answer
to indicate which question is answered.
- Work need not be shown.
- Only answers will be graded.
- $5$ points each and $100$ points total.
- Find the interval on which $y=x^3-3x^2+2x+1$ is both decreasing and concave downward. Answer. (1) .
- Find $\displaystyle\frac{dy}{dx}=$ (2) and $\displaystyle\frac{d^2y}{dx^2}=$ (3) at the point $x=1$, $y=1$ of the curve $x^3+xy-2y^4=0$.
- Evaluate $\displaystyle\int_2^3\sqrt{3+2x-x^2}dx$. Answer: (4) .
- 當 $x=2$ 時則有 $\displaystyle\theta=\frac\pi6$;
- 當 $x=3$ 時則有 $\displaystyle\theta=\frac\pi2$;
- 求導有 $dx=2\cos\theta\,d\theta$。
- Find the volume of the solid generated by revolving the following region about the $y$-axis: $\left\{\left(x,y\right):0\leq x\leq\pi\mbox{ and }0\leq y\leq\sin x\right\}$. Answer: (5) .
- Find the arc length of the curve $\displaystyle y=\int_0^x\sqrt{\sin t}dt$ from $x=0$ to $x=\pi/3$. Answer: (6) .
- Find the solution of the differential equation $y'=\left(1+2x\right)\left(1+y^2\right)$ with the initial condition $y\left(0\right)=1$. Answer: (7) .
- Find the solution of the differential equation $y'+y\tan x=\sec x$ with the initial condition $y\left(0\right)=2$. Answer: (8) .
- Find the first three nonzero terms of the McLaurin series of $\tan x$. Answer: (9) .
- Let $u=u\left(x,y\right)$ be a function of $x$, $y$. Express $\displaystyle\frac{\partial u}{\partial x}$ in terms of polar coordinates $r$, $\theta$ together with $\displaystyle\frac{\partial u}{\partial r}$ and $\displaystyle\frac{\partial u}{\partial\theta}$. Answer: (10) .
- Find the directional derivative of $f\left(x,y,z\right)=x^yz^2$ at the point $\left(e,e,1\right)$ in the direction $\displaystyle{\bf u}=\frac3{13}{\bf i}+\frac{12}{13}{\bf j}+\frac{4}{13}{\bf k}$. Answer: (11) .
- Find the critical points of $f\left(x,y\right)=x^2+y^4+3xy^2-5x$ which are saddle points. Answer: (12) .
- 若 $y=0$,則 $\displaystyle x=\frac52$;
- 若 $2y^2+3x=0$,則代回第一式可得 $x=-2$,從而有 $y=\pm\sqrt3$。
- Find the minimum of $x^2+y^2+z^2$ for $\left(x,y,z\right)$ on the intersection curve of the two surfaces $y+2z=1$ and $3x^2+y^2-z^2=1$. Answer: (13) .
- 若 $x=0$,則代入第三式可得 $z=0$ 或 $\displaystyle z=\frac43$;
- 若 $\displaystyle\lambda=-\frac13$,則代入第二式有 $\displaystyle z=\frac13$,因此 $\displaystyle x=\pm\frac{\sqrt3}3$。
- 若 $x=0$,則第五式可寫為 $y^2-z^2=1$,而第四式表明 $y=1-2z$,代入則有 $3z^2-4z=0$,因此 $z=0$ 或 $\displaystyle\frac43$,從而 $\displaystyle y=1$ 或 $\displaystyle y=-\frac53$。
- 若 $\displaystyle\lambda_2=-\frac13$,則第二式與第三式可分別寫為 $4y+3\lambda_1=0$ 及 $8z+6\lambda_1=0$。將前者乘以兩倍後減去後者,即有 $y=z$。並由第四式可得 $\displaystyle y=z=\frac13$,再代入最後一式則能解得 $\displaystyle x=\pm\frac{\sqrt3}3$。
- Evaluate $\displaystyle\int_0^3\int_{\sqrt{x/3}}^1e^{y^3}dydx$. Answer: (14) .
- Let $R$ be the region in the first quadrant of the $xy$-plane bounded by $xy=1$, $xy=2$, $y=x$ and $y=2x$. Evaluate $\displaystyle\iint_Re^{xy}dxdy$. Answer: (15) .
- Evaluate $\displaystyle\iiint_{\Omega}\frac{\cos\sqrt{x^2+y^2+z^2}}{x^2+y^2+z^2}dxdydz$, where $\Omega$ is given by $\Omega=\left\{\left(x,y,z\right):1\leq x^2+y^2+z^2\leq2\right\}$. Answer: (16) .
- Evaluate $\displaystyle\iiint_{\Omega}ze^{x^2+y^2+3z^2}dxdydz$, where $\Omega$ is the cylinder defined by $\Omega=\left\{\left(x,y,z\right):x^2+y^2\leq1\mbox{ and }0\leq z\leq1\right\}$. Answer: (17) .
- Let $S$ be the surface described by $z=x^2+\frac{y^2}2$ with $4x^2+y^2\leq1$ oriented with normals with positive ${\bf k}$-components. ${\bf F}\left(x,y,z\right)=x{\bf i}-y{\bf j}+{\bf k}$. Evaluate $\displaystyle\iint_S{\bf F}\cdot d{\bf S}$. Answer: (18) .Also, evaluate $\displaystyle\iint_SdS$. Answer: (19) .
- Let $C$ be the counterclockwise oriented boundary of the region in the $xy$-plane enclosed by $x^2+y^2-2x=0$ and $x^2+y^2-2y=0$. Evaluate the line integral $\displaystyle\oint_C\left(y+e^{-x^2}\right)dx+\left(3x+\sin\left(y^2\right)\right)dy$. Answer: (20) .
訣竅
函數遞減表明 $y'<0$;而凹口向下表明 $y''<0$。解法
為了找出所求的區間,我們解下列的聯立不等式$\left\{\begin{aligned}&y'=3x^2-6x+2<0\\&y''=6x-6<0\end{aligned}\right.$
因此可得$\displaystyle\left\{\begin{aligned}1-\frac1{\sqrt3}<x&<1+\frac1{\sqrt3}\\x&<1\end{aligned}\right.$
即$\displaystyle1-\frac1{\sqrt3}< x<1$
訣竅
利用隱函數微分即可。解法
隱函數微分一次可得 $3x^2+y+xy'-8y^3y'=0$,取 $\left(x,y\right)=\left(1,1\right)$ 代入後可得$\displaystyle3+1+\left.\frac{dy}{dx}\right|_{(x,y)=(1,1)}-8\left.\frac{dy}{dx}\right|_{(x,y)=(1,1)}=0$
整理即有 $\displaystyle\left.\frac{dy}{dx}\right|_{\left(x,y\right)=\left(1,1\right)}=\frac47$。接著對已經隱函數微分一次後的方程再微分一次可得$6x+2y'+\left(x-8y^3\right)y''-24y^2y'^2=0$
取 $x=1$、$y=1$、$\displaystyle\left.\frac{dy}{dx}\right|_{\left(x,y\right)=\left(1,1\right)}=\frac47$ 代入可得$\displaystyle6+2\cdot\frac47+\left(1-8\right)\left.\frac{d^2y}{dx^2}\right|_{(x,y)=(1,1)}-24\cdot1^2\cdot\left(\frac47\right)^2=0$
整理求得 $\displaystyle\left.\frac{d^2y}{dx^2}\right|_{\left(x,y\right)=\left(1,1\right)}=-\frac{34}{343}$。訣竅
配方法後三角代換。解法
因為 $3+2x-x^2=4-\left(x-1\right)^2$,令 $x=1+2\sin\theta$,則$\begin{aligned}\displaystyle\int_2^3\sqrt{3+2x-x^2}dx&=\int_{\frac\pi6}^{\frac\pi2}2\cos\theta\cdot2\cos\theta\,d\theta\\&=2\int_{\frac\pi6}^{\frac\pi2}\left(1+\cos2\theta\right)d\theta\\&=\left(2\theta+\sin2\theta\right)\Big|_{\frac\pi6}^{\frac\pi2}\\&=\frac{2\pi}3-\frac{\sqrt3}2.\end{aligned}$
訣竅
根據旋轉體體積公式即可。解法
利用旋轉體體積公式可得$\displaystyle\begin{aligned}V&=\int_0^{\pi}2\pi xf\left(x\right)dx\\&=2\pi\int_0^{\pi}x\sin x\,dx\\&=\left(-2\pi x\cos x\right)\Big|_0^\pi+2\pi\int_0^{\pi}\cos x\,dx\\&=2\pi^2+\left(2\pi\sin x\right)\Big|_0^\pi\\&=2\pi^2.\end{aligned}$
訣竅
利用曲線弧長的公式即可。解法
運用弧長的計算公式列式並計算如下:$\displaystyle\begin{aligned}s&=\int_0^{\frac\pi3}\sqrt{1+f'^2\left(x\right)}dx\\&=\int_0^{\frac\pi3}\sqrt{1+\sin x}\,dx\\&=\int_0^{\frac\pi3}\left(\sin\frac{x}2+\cos\frac{x}2\right)dx\\&=\left.-2\cos\frac{x}2+2\sin\frac{x}2\right|_0^{\frac\pi3}\\&=3-\sqrt3.\end{aligned}$
訣竅
利用分離變數法即可。解法
移項整理有$\displaystyle\frac{dy}{1+y^2}=\left(1+2x\right)dx$
同取範圍為 $\left[0,x\right]$ 的定積分可得$\arctan y\left(x\right)-\arctan y\left(0\right)=x+x^2$
運用初始條件並整理之可得$\displaystyle y\left(x\right)=\tan\left(x^2+x+\frac{\pi}{4}\right)$
訣竅
利用積分因子即可。解法
對該微分方程同乘以 $\sec x$ 如此可得$\left(y\sec x\right)'=y'\sec x+y\sec x\tan x=\sec^2x$
同取範圍為 $\left[0,x\right]$ 的定積分,於是有$y\left(x\right)\sec x-y\left(0\right)\sec\left(0\right)=\tan x$
使用初始條件並整理之,可解得$y\left(x\right)=\left(2+\tan x\right)\cos x$
訣竅
直接計算 Taylor 展開式即可。解法
設 $f\left(x\right)=\tan x$,則$\begin{aligned}f'\left(x\right)&=\sec^2x\\f''\left(x\right)&=2\sec^2x\tan x\\f'''\left(x\right)&=2\sec^4+4\sec^2x\tan^2x\\f^{\left(4\right)}\left(x\right)&=16\sec^4x\tan x+8\sec^2x\tan^2x\\f^{\left(5\right)}\left(x\right)&=16\sec^6x+32\sec^4x\tan^2x+16\sec^4x\tan x+16\sec^2x\tan^3x\end{aligned}$
如此我們有$f''\left(0\right)=0=f^{\left(4\right)}\left(0\right)$ ; $f'\left(0\right)=1$ ; $f'''\left(0\right)=2$ ; $f^{\left(5\right)}\left(0\right)=16$
因此 Taylor 展開後的前三個非零項為 $\displaystyle x+\frac{x^3}3+\frac{2x^5}{15}$。訣竅
用多變數微分的連鎖律。解法
直接計算有$\displaystyle\frac{\partial u}{\partial x}=\frac{\partial u}{\partial r}\frac{\partial r}{\partial x}+\frac{\partial u}{\partial\theta}\frac{\partial\theta}{\partial x}=\cos\theta\frac{\partial u}{\partial r}-\frac{\sin\theta}r\frac{\partial u}{\partial\theta}$
其中$\displaystyle\begin{aligned} &\frac{\partial r}{\partial x}=\frac{\partial}{\partial x}\sqrt{x^2+y^2}=\frac1{2\sqrt{x^2+y^2}}\cdot2x=\frac{r\cos\theta}{r}=\cos\theta\\&\frac{\partial\theta}{\partial x}=\frac{1}{\displaystyle1+\left(\frac yx\right)^2}\cdot-\frac y{x^2}=-\frac{r\sin\theta}{r^2}=-\frac{\sin\theta}r.\end{aligned}$
訣竅
方向導數可利用梯度與方向的內積求解即可。解法
首先計算梯度為 $\nabla f=\left(yx^{y-1}z^2,x^yz^2\ln x,2x^yz\right)$,於是在 $\left(e,e,1\right)$ 時的梯度為$\nabla f\left(e,e,1\right)=\left(e^e,e^e,2e^e\right)$
因此方向導數為$\displaystyle D_{\bf u}f\left(e,e,1\right)=\left(e^e,e^e,2e^e\right)\cdot\left(\frac3{13},\frac{12}{13},\frac4{13}\right)=\frac{23e^e}{13}$
訣竅
利用一階偏導為零求出臨界點,再用二階判別式找出鞍點。解法
為了找出臨界點,我們解以下的聯立方程組:
$\left\{\begin{aligned} &f_x=2x+3y^2-5=0\\&f_y=4y^3+6xy=0\end{aligned}\right.$
由第二式可知 $y=0$ 或 $2y^2+3x=0$。再者,我們計算二階偏導函數可得
$f_{xx}=2$ ;$f_{xy}=6y=f_{yx}$ ; $f_{yy}=12y^2+6x$
如此由 Hessian 行列式有$H\left(x,y\right)=\left|\begin{array}{cc}f_{xx}&f_{xy}\\f_{yx}&f_{yy}\end{array}\right|=\left|\begin{array}{cc}2&6y\\6y&12y^2+6x\end{array}\right|=12x-12y^2$
因此代入座標檢查可知$\displaystyle H\left(\frac{5}{2},0\right)=30>0$,因此不為鞍點;
$H\left(-2,\pm\sqrt{3}\right)=-48<0$,故皆為鞍點。
訣竅
本題使用限制條件並搭配基本的不等式即可求解;亦可先化簡後再利用 Lagrange 乘子法來求解;亦可直接使用多條件的 Lagrange 乘子法直接計算。解法一
由 $3x^2+y^2-z^2=1$ 來消去 $x^2+y^2+z^2$ 中的 $x$ 可得$\displaystyle x^2+y^2+z^2=\frac{1-y^2+z^2}3+y^2+z^2=\frac{1+2y^2}3$
接著運用 Cauchy 不等式與另一個限制條件可知$\left(y^2+\left(\sqrt2z\right)^2\right)\left(1^2+\sqrt2^2\right)\geq\left(y+2z\right)^2=1$
這表明$\displaystyle x^2+y^2+z^2=\frac13+\frac23\left(y^2+2z^2\right)\geq\frac13+\frac23\cdot\frac13=\frac59$
由不等式的等號成立條件容易知道 $y=z$,故得 $\displaystyle y=z=\frac13$、$\displaystyle x=\pm\frac{\sqrt3}3$。解法二
欲求極小值的函數可先透過第一個條件改寫為 $f\left(x,z\right)=x^2+5z^2-4z+1$,而第二個條件則改寫為 $3x^2+3z^2-4z=0$,如此我們設 Lagrange 乘子函數為$F\left(x,z,\lambda\right)=\left(x^2+5z^2-4z+1\right)+\lambda\left(3x^2+3z^2-4z\right)$
如此解下列聯立方程組:$\left\{\begin{aligned}&F_x(x,z,\lambda)=2x+6x\lambda=0,\\&F_z(x,z,\lambda)=10z-4+\lambda\left(6z-4\right)=0,\\&F_{\lambda}(x,z,\lambda)=3x^2+3z^2-4z=0.\end{aligned}\right.$
由第一條式子可知 $x=0$ 或 $\displaystyle\lambda=-\frac13$。$f\left(0,0\right)=1$ ; $\displaystyle f\left(0,\frac43\right)=\frac{41}9$ ; $\displaystyle f\left(\pm\frac{\sqrt3}3,\frac13\right)=\frac59$
因此最小值為 $\displaystyle\frac59$。解法三
設 Lagrange 乘子函數如下$F\left(x,y,z,\lambda_1,\lambda_2\right)=x^2+y^2+z^2+\lambda_1\left(y+2z-1\right)+\lambda_2\left(3x^2+y^2-z^2-1\right)$
據此解下列聯立方程組:$\left\{\begin{aligned}&F_x(x,y,z,\lambda_1,\lambda_2)=2x+6\lambda_2x=0,\\&F_y(x,y,z,\lambda_1,\lambda_2)=2y+\lambda_1+2\lambda_2y=0,\\&F_z(x,y,z,\lambda_1,\lambda_2)=2z+2\lambda_1-2\lambda_2z=0,\\&F_{\lambda_1}(x,y,z,\lambda_1,\lambda_2)=y+2z-1=0,\\&F_{\lambda_2}(x,y,z,\lambda_1,\lambda_2)=3x^2+y^2-z^2-1=0.\end{aligned}\right.$
由第一式可知 $x=0$ 或 $\displaystyle\lambda_2=-\frac13$。$f\left(0,1,0\right)=1$ ; $\displaystyle f\left(0,-\frac53,\frac43\right)=\frac{41}9$ ; $\displaystyle f\left(\pm\frac{\sqrt3}3,\frac13,\frac13\right)=\frac59$
因此最小值為 $\displaystyle\frac59$。訣竅
交換積分順序計算即可解法
原先的積分範圍為 $\left\{\begin{aligned}0\leq x&\leq3\\\sqrt{x/3}\leq y&\leq1\end{aligned}\right.$,可改寫為 $\left\{\begin{aligned}0\leq x&\leq3y^2\\0\leq y&\leq1\end{aligned}\right.$,如此原重積分可改寫並計算如下:$\displaystyle\int_0^1\int_0^{3y^2}e^{y^3}dxdy=\int_0^1xe^{y^3}\Big|_{x=0}^{x=3y^2}dy=\int_0^13y^2e^{y^3}dy=e^{y^3}\Big|_0^1=e-1$.
訣竅
利用變數代換後改寫積分範圍。解法
令 $u=xy$、$\displaystyle v=\frac{y}{x}$,如此有$\begin{aligned}\displaystyle&\int_1^2\int_1^2e^u\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right|dvdu=\int_1^2\int_1^2e^u\cdot\frac1{2v}dvdu\\=&\left(\int_1^2e^udu\right)\left(\int_1^2\frac{dv}{2v}\right)=\frac{e\left(e-1\right)\ln2}2.\end{aligned}$
其中 $\displaystyle\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right|$ 計算如下:$\displaystyle\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}=\left|\begin{array}{cc}\displaystyle\frac{\partial x}{\partial u}&\displaystyle\frac{\partial x}{\partial v}\\\displaystyle\frac{\partial y}{\partial u}&\displaystyle\frac{\partial y}{\partial v}\end{array}\right|=\left|\begin{array}{cc}\displaystyle\frac{1}{2\sqrt{uv}}&\displaystyle-\frac{\sqrt{u}}{2\sqrt{v^3}}\\\displaystyle\frac{\sqrt{v}}{2\sqrt{u}}&\displaystyle\frac{\sqrt{u}}{2\sqrt{v}}\end{array}\right|=\frac{1}{2v}$
訣竅
利用球極座標代換即可。解法
運用球極座標代換,令 $\left\{\begin{aligned} &x=\rho\sin\phi\cos\theta\\&y=\rho\sin\phi\sin\theta\\&z=\rho\cos\phi\end{aligned}\right.$,其中範圍為 $\left\{\begin{aligned}&1\leq\rho\leq\sqrt{2}\\&0\leq\theta\leq2\pi\\&0\leq\phi\leq\pi\end{aligned}\right.$,如此原三重積分可改寫並計算如下:$\begin{aligned}\displaystyle&\int_1^{\sqrt2}\int_0^{2\pi}\int_0^\pi\frac{\cos\left(\rho\right)}{\rho^2}\rho^2\sin\phi\,d\phi\,d\theta\,d\rho\\=&2\pi\left(\int_1^{\sqrt2}\cos\rho\,d\rho\right)\left(\int_0^{\pi}\sin\phi\,d\phi\right)\\=&4\pi\left(\sin\left(\sqrt2\right)-\sin\left(1\right)\right).\end{aligned}$
訣竅
利用圓柱座標代換即可。解法
利用圓柱座標代換 $\left\{\begin{aligned} &x=r\cos\theta\\&y=r\sin\theta\\&z=z\end{aligned}\right.$,則 $\left\{\begin{aligned} &0\leq r\leq1\\&0\leq\theta\leq2\pi\\&0\leq z\leq1\end{aligned}\right.$,如此原三重積分可改寫並計算如下:$\begin{aligned}\iiint_\Omega ze^{x^2+y^2+z^2}dxdydz&=\int_0^1\int_0^{2\pi}\int_0^1ze^{r^2+3z^2}r\,dr\,d\theta\,dz\\=&2\pi\left(\int_0^1ze^{3z^2}\,dz\right)\left(\int_0^1re^{r^2}\,dr\right)\\&=2\pi\cdot\left.\frac{e^{3z^2}}6\right|_0^1\cdot\left.\frac{e^{r^2}}2\right|_0^1\\&=\frac{\pi\left(e^3-1\right)\left(e-1\right)}6.\end{aligned}$
訣竅
運用曲面積分的定義即可。解法
首先由 $z$ 分量為正,求出 $d{\bf S}=\left(-2x,-y,1\right)dA$,因此有$\displaystyle\iint_S{\bf F}\cdot d{\bf S}=\iint_S\left(-2x^2+y^2+1\right)dA$
運用橢圓座標變換,令 $\left\{\begin{aligned} &x=r\cos\theta/2\\&y=r\sin\theta\end{aligned}\right.$,其中範圍為 $\left\{\begin{aligned} &0\leq r\leq1\\&0\leq \theta\leq2\pi\end{aligned}\right.$,如此上式可改寫並計算如下:$\begin{aligned}\displaystyle\iint_S{\bf F}\cdot d{\bf S}&=\int_0^{2\pi}\int_0^1\left(-\frac{2r^2\cos^2\theta}4+r^2\sin^2\theta+1\right)\frac r2dr\,d\theta\\&=\int_0^{2\pi}\left.-\frac{r^4\cos^2\theta}{16}+\frac{r^4\sin^2\theta}8+\frac{r^2}4\right|_0^1d\theta\\&=\int_0^{2\pi}\left(\frac14+\frac{\sin^2\theta}8-\frac{\cos^2\theta}{16}\right)d\theta\\&=\int_0^{2\pi}\left(\frac9{32}-\frac{3\cos2\theta}{32}\right)d\theta\\&=\left.\frac{9\theta}{32}-\frac{3\sin2\theta}{64}\right|_0^{2\pi}\\&=\frac{9\pi}{16}.\end{aligned}$
另一方面,我們有$\begin{aligned}\displaystyle\iint_SdS&=\iint_S\sqrt{4x^2+y^2+1}\,dA\\&=\int_0^{2\pi}\int_0^1\sqrt{r^2+1}\frac r2\,dr\,d\theta\\&=2\pi\left.\frac{\left(r^2+1\right)^{\frac32}}6\right|_0^1\\=&\frac{\left(2\sqrt2-1\right)\pi}3.\end{aligned}$
L題有解法3:
回覆刪除利用題目給定之兩平面,可求出兩平面之交線參數式x=f(t),y=g(t),z=h(t),接著將其代入至x^2+y^2+z^2,可得到一串t的函數,接著微分=0可得出t值,再代回x^2+y^2+z^2即可得出最小值為5/9
給定的兩平面?
刪除