九十學年度 原子科學系 系轉學生招生考試
科目 微積分 科號 161 共 1 頁第 1 頁 *請在試卷【答案卷】內作答- 填充題(共五題,每題八分,請將答案依甲、乙、丙…次序作答,不需演算過程)
- Let $\displaystyle f\left(x\right)=\int_1^xt^{\frac13}dt$, $x\in\left[1,5\right]$. Which of the following is true? Ans. 甲 .
a. $f\left(1\right)>0$ b. $f\left(5\right)<0$ c. $f\left(2\right)>f\left(4\right)$ d. $f\left(2\right)<f\left(4\right)$
- Find the limit $\displaystyle\lim_{n\to\infty}\left(\sum_{k=1}^n\frac{k^{10}}{n^{11}}\right)$. Ans. 乙 .
- Evaluate the integral $\displaystyle\int_8^{27}\frac{dx}{x-x^{1/3}}$. Ans. 丙 .
- 當 $x=8$ 時有 $u=2$;
- 當 $x=27$ 時有 $u=3$;
- 同時取立方可知 $x=u^3$,求導則有 $dx=3u^2\,du$。
- Evaluate the integral $\displaystyle\int_0^1\int_x^1xe^{2y^3}dy\,dx$. Ans. 丁 .
- Find the area of the top half of the region inside the cardioid $r=1+\cos\theta$ and outside the circle $r=\cos\theta$. Ans. 戊 .
- 計算與證明題(每題十二分,必須寫出演算證明過程)
- Let $f$ be a $C^1$ function on $\mathbb R$. Verify that $\displaystyle z=f\left(\frac yx\right)$ satisfies the equation $\displaystyle x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=0$.
- Let $f$ be a continuous real-valued function defined on $\mathbb R$. Using integration by parts, prove
$\displaystyle\int_0^x\left(\int_0^tf\left(z\right)dz\right)dt=\int_0^xf\left(t\right)\left(x-t\right)dt$.
- Let $\left\{a_n\right\}_{n=1}^\infty$ be a sequence with nonnegative terms. Suppose that $\displaystyle\sum_{n=1}^\infty a_n^2$ converges. Does $\displaystyle\sum_{n=1}^\infty\frac{a_n}n$ converge? Prove or disprove it.
- Find $\displaystyle\int_Dy^2dA$, where $D$ is the region bounded by the lines $x-2y=2$, $x-2y=5$, $2x+3y=1$ and $2x+3y=3$.
- Evaluate the line integral
$\displaystyle\int_C\left(-y+e^x\right)dx+\left(x^3+\sin y\right)dy$,
where the curve $C=\left\{\left(x,y\right)|x^2+y^2=1\right\}$ is traversed counterclockwise.
訣竅
計算出 $f$ 後直接核驗選項即可。解法
直接計算可知$\displaystyle f\left(x\right)=\frac34\left(x^{\frac43}-1\right).$
那麼可知 $f\left(1\right)=0$、$\displaystyle f\left(5\right)=\frac34\left(5^{\frac43}-1\right)>0$ 以及$\displaystyle f\left(4\right)=\frac34\left(4^{\frac43}-1\right)>\frac34\left(2^{\frac43}-1\right)=f\left(2\right).$
故選 d.。事實上可以看出 $f$ 是遞增函數,並且 $f\left(1\right)=0$。由此也不難選出 d.。訣竅
將該級數化為特定函數的 Riemann sum,如此計算其極限等同於計算定積分。解法
將極限式改寫如下$\displaystyle\lim_{n\to\infty}\left(\sum_{k=1}^n\frac{k^{10}}{n^{11}}\right)=\lim_{n\to\infty}\frac1n\sum_{k=1}^n\left(\frac kn\right)^{10}.$
可視之為 $f\left(x\right)=x^{10}$ 在 $\left[0,1\right]$ 上取 $n$ 等分割的上 Riemann sum,那麼取極限後的結果即為定積分 $\displaystyle\int_0^1x^{10}dx=\frac1{11}$。訣竅
注意到積分的上下界都是立方數,而被積分函數中也有 $x^{1/3}$,因此運用變數代換處理之。解法
令 $u=x^{1/3}$,那麼可知$\begin{aligned}\int_8^{27}\frac{dx}{x-x^{1/3}}&=\int_2^3\frac{3u^2du}{u^3-u}\\&=3\int_2^3\frac u{u^2-1}du\\&=\frac32\int_2^3\left(\frac1{u-1}+\frac1{u+1}\right)du\\&=\left.\frac32\left(\ln\left(u-1\right)+\ln\left(u+1\right)\right)\right|_2^3\\&=\frac32\ln\frac83.\end{aligned}$
訣竅
由於直接積分不可行,所以交換積分次序處理之。解法
原積分區域為 $0\leq x\leq1$、$x\leq y\leq1$ 可改寫為 $0\leq x\leq y$、$0\leq y\leq1$,那麼所求的重積分可改寫並計算如下$\begin{aligned}\int_0^1\int_x^1xe^{2y^3}dy\,dx&=\int_0^1\int_0^yxe^{2y^3}dx\,dy\\&=\int_0^1\left.\frac{x^2}2e^{2y^3}\right|_0^ydy\\&=\frac12\int_0^1y^2e^{2y^3}dy\\&=\frac1{12}\int_0^1e^{2y^3}d(2y^3)\\&=\left.\frac{e^{2y^3}}{12}\right|_0^1=\frac{e^2-1}{12}.\end{aligned}$
訣竅
繪出示意圖後注意到應計算心臟線上半的面積扣去上半圓的面積,其中前可運用極座標求面積公式來計算之。解法
繪圖如下先運用極座標面積公式計算上半心臟線的面積如下$\begin{aligned}A&=\frac12\int_0^{\pi}\left(1+\cos\theta\right)^2d\theta\\&=\frac12\int_0^\pi\left(1+2\cos\theta+\cos^2\theta\right)d\theta\\&=\frac14\int_0^\pi\left(3+4\cos\theta+\cos2\theta\right)d\theta\\&=\left.\frac14\left(3\theta+4\sin\theta+\frac{\sin2\theta}2\right)\right|_0^\pi\\&=\frac{3\pi}4.\end{aligned}$
因此所求面積為 $\displaystyle\frac{3\pi}4-\frac\pi8=\frac{5\pi}8$。訣竅
運用多變函數的連鎖律計算之。解法
直接運用連鎖律計算 $z$ 對 $x$ 以及對 $y$ 的偏微分可知$\displaystyle\frac{\partial z}{\partial x}=f'\left(\frac yx\right)\cdot-\frac y{x^2},\quad\frac{\partial z}{\partial y}=f'\left(\frac yx\right)\cdot\frac1x.$
如此直接計算檢驗可知$\displaystyle x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=x\cdot-\frac y{x^2}f'\left(\frac yx\right)+y\cdot\frac1xf'\left(\frac yx\right)=0.$
訣竅
根據提示運用分部積分法,為了清楚使用此法,可運用記號定義新函數來表示。解法
設 $\displaystyle F\left(t\right)=\int_0^tf\left(z\right)dz$,那麼由微積分基本定理可知 $F'\left(t\right)=f\left(t\right)$。據此由分部積分法可知$\begin{aligned}\int_0^x\left(\int_0^tf\left(z\right)dz\right)dt&=\int_0^xF\left(t\right)dt\\&=tF\left(t\right)\Big|_{t=0}^{t=x}-\int_0^xtF'\left(t\right)dt\\&=x\int_0^xf\left(z\right)dz-\int_0^xtf\left(t\right)dt\\&=x\int_0^xf\left(t\right)dt-\int_0^xtf\left(t\right)dt\\&=\int_0^xf\left(t\right)\left(x-t\right)dt,\end{aligned}$
其中 $\displaystyle\int_0^xf\left(z\right)dz=\int_0^xf\left(t\right)dt$ 係根據啞變數變換。訣竅
運用算術幾何不等式以及比較審歛法和已知的收斂級數求證之。解法
答案是肯定的,級數 $\displaystyle\sum_{n=1}^\infty\frac{a_n}n$ 收斂。證明如下:首先注意到不等式$\displaystyle\frac{a_n}n\leq\frac{a_n^2}2+\frac1{2n^2}.$
那麼取和可知$\displaystyle\sum_{n=1}^\infty\frac{a_n}n\leq\frac12\sum_{n=1}^\infty a_n^2+\frac12\sum_{n=1}^\infty\frac1{n^2}<\infty,$
其中利用到了題目已知的條件和 $p$ 級數在 $p=2$ 時收斂。訣竅
注意到給定的邊界適合使用變數代換法求解,其中應留意 Jacobian 行列式的計算。解法
由邊界條件可以注意到使用這樣的變數代換,設 $u=x-2y$、$v=2x+3y$,那麼變數範圍為 $2\leq u\leq5$、$1\leq v\leq3$。再者,容易逆解得 $\displaystyle x=\frac{3u+2v}7$、$\displaystyle y=-\frac{2u-v}7$,如此 Jacobian 行列式值為$\displaystyle\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}=\left|\begin{matrix}\displaystyle\frac37&\displaystyle\frac27\\\displaystyle-\frac27&\displaystyle\frac17\end{matrix}\right|=\frac17.$
因此所求的重積分可以改寫並計算如下$\begin{aligned}\int_Dy^2dA&=\int_1^3\int_2^5\left(-\frac{2u-v}7\right)^2\cdot\frac17du\,dv\\&=\frac1{343}\int_1^3\int_2^5\left(4u^2-4uv+v^2\right)du\,dv\\&=\frac1{343}\int_1^3\left.\left(\frac43u^3-2u^2v+uv^2\right)\right|_{u=2}^{u=5}dv\\&=\frac1{343}\int_1^3\left(156-42v+3v^2\right)dv\\&=\left.\frac1{343}\left(156v-21v^2+v^3\right)\right|_1^3\\&=\frac{170}{343}.\end{aligned}$
訣竅
運用 Green 定理求解即可;亦可參數化計算之。解法一
設 $C$ 所包圍的區域為 $D=\left\{\left(x,y\right)\in\mathbb R^2\,:\,x^2+y^2\leq1\right\}$,那麼由 Green 定理計算該線積分如下$\begin{aligned}\int_C\left(-y+e^x\right)dx+\left(x^3+\sin y\right)dy&=\iint_D\left[\frac{\partial}{\partial x}\left(x^3+\sin y\right)-\frac{\partial}{\partial y}\left(-y+e^x\right)\right]dA\\&=\iint_D\left(3x^2+1\right)dA.\end{aligned}$
運用極座標變換,令 $x=r\cos\theta$、$y=r\sin\theta$,其中變數範圍為 $0\leq r\leq1$、$0\leq\theta\leq2\pi$。如此該線積分能夠化為如下並計算$\begin{aligned}\int_C\left(-y+e^x\right)dx+\left(x^3+\sin y\right)dy&=\int_0^{2\pi}\int_0^1\left(3r^2\cos^2\theta+1\right)r\,dr\,d\theta\\&=\int_0^{2\pi}\left.\left(\frac{3r^4}4\frac{1+\cos2\theta}2+\frac{r^2}2\right)\right|_0^1d\theta\\&=\frac18\int_0^{2\pi}\left(7+3\cos2\theta\right)d\theta\\&=\left.\frac18\left(7\theta+\frac32\sin2\theta\right)\right|_0^{2\pi}\\&=\frac{7\pi}4.\end{aligned}$
解法二
將曲線 $C$ 參數化為 $x=\cos\theta$、$y=\sin\theta$,其中 $0\leq\theta\leq2\pi$,那麼線積分可表達如下$\begin{aligned}\int_C\left(-y+e^x\right)dx+\left(x^3+\sin y\right)dy&=\int_0^{2\pi}\left[\left(-\sin\theta+e^{\cos\theta}\right)\cdot-\sin\theta+\left(\cos^3\theta+\sin\left(\sin\theta\right)\right)\cos\theta\right]d\theta\\&=\int_0^{2\pi}\left(\sin^2\theta+\cos^4\theta\right)d\theta+e^{\cos\theta}-\cos\left(\sin\theta\right)\Big|_0^{2\pi}\\&=\int_0^{2\pi}\left[\frac{1-\cos2\theta}2+\left(\frac{1+\cos2\theta}2\right)^2\right]d\theta\\&=\frac14\int_0^{2\pi}\left(3+\cos^22\theta\right)d\theta\\&=\frac18\int_0^{2\pi}\left(7+\cos4\theta\right)d\theta\\&=\left.\frac18\left(7\theta+\frac{\sin4\theta}4\right)\right|_0^{2\pi}\\&=\frac{7\pi}4.\end{aligned}$
沒有留言:
張貼留言