九十學年度 八系聯招 系轉學生招生考試
科目 微積分 科號 003 共 1 頁第 1 頁 *請在試卷【答案卷】內作答- 填充題(共五題,每題八分,請將答案依甲、乙、丙…次序作答,不需演算過程)
- Let f(x)=∫x1t13dt, x∈[1,5]. Which of the following is true? Ans. 甲 .
a. f(1)>0 b. f(5)<0 c. f(2)>f(4) d. f(2)<f(4)
- Let a1≥a2≥⋯≥a10>0 . Find lim. Ans. 乙 .
- Evaluate the integral \displaystyle\int_{\frac\pi4}^{\frac\pi3}\frac{\ln\left(\tan x\right)}{\sin x\cos x}dx. Ans. 丙 .
- Evaluate the integral \displaystyle\int_0^1\int_x^1xe^{2y^3}dydx. Ans. 丁 .
- Find the area of the top half of the region inside the cardioid r=1+\cos\theta and outside the circle r=\cos\theta. Ans. 戊 .
- 計算與證明題(每題十二分,必須寫出演算證明過程)
- Let f be a C^1 function on \mathbb{R}^3. Show that if w=f\left(r-s,s-t,t-r\right), then \displaystyle\frac{\partial w}{\partial r}+\frac{\partial w}{\partial s}+\frac{\partial w}{\partial t}=0.
- Let f be a continuous real-valued function defined on \mathbb R. Using integration by parts, prove
\displaystyle\int_0^x\left(\int_0^tf\left(z\right)dz\right)dt=\int_0^xf\left(t\right)\left(x-t\right)dt.
- Let \left\{a_n\right\}_{n=1}^{\infty} be a sequence with nonnegative terms. Suppose that \displaystyle\sum_{n=1}^{\infty}a_n^2 converges. Does \displaystyle\sum_{n=1}^{\infty}\frac{a_n}n converge? Prove or disprove it.
- Find \displaystyle\int_Dy^2dA, where D is the region bounded by the lines x-2y=2, x-2y=5, 2x+3y=1 and 2x+3y=3.
- Evaluate the line integral
\displaystyle\int_C\left(-y+e^x\right)dx+\left(x^3+\sin y\right)dy,
where the curve C=\left\{\left(x,y\right)|x^2+y^2=1\right\} is traversed counterclockwise.
訣竅
計算出 f 後直接核驗選項即可。解法
直接計算可知f(x)=34(x43−1).
那麼可知 f(1)=0、f(5)=34(543−1)>0 以及f(4)=34(443−1)>34(243−1)=f(2)
故選d.。事實上可以看出 f 是遞增函數,並且 f(1)=0。由此也不難選出d.。訣竅
分子分母同除以最大的量,如此其餘項小於 1,那麼當 n 趨於無窮時其餘項會趨於零。解法
將極限式改寫如下\displaystyle\lim_{n\to\infty}\left(a_1^n+a_2^n+\cdots+a_{10}^n\right)^{1/n}=a_1\lim_{n\to\infty}\left(1+\frac{a_2}{a_1}+\cdots+\frac{a_{10}}{a_1}\right)^{1/n}=a_1\left(1+0+\cdots+0\right)^0=a_1.
訣竅
藉由適當的改寫被積分函數來處理之。解法
首先分子分母同乘以 \cos x 並利用下列兩個三角函數恆等式:\displaystyle\frac{\cos x}{\sin x}=\frac1{\tan x},\quad\frac1{\cos^2x}=\sec^2x.
可將所求的定積分改寫並計算如下\begin{aligned}\int_{\pi/4}^{\pi/3}\frac{\ln\left(\tan x\right)}{\sin x\cos x}dx&=\int_{\pi/4}^{\pi/3}\frac{\ln\left(\tan x\right)}{\tan x}\sec^2xdx\\&=\int_{\pi/4}^{\pi/3}\frac{\ln\left(\tan x\right)}{\tan x}d\tan x\\&=\int_{\pi/4}^{\pi/3}\ln\left(\tan x\right)d\ln\left(\tan x\right)\\&=\left.\frac{\ln^2\left(\tan x\right)}2\right|_{\pi/4}^{\pi/3}\\&=\frac{\ln^23}8.\end{aligned}
訣竅
由於直接積分不可行,所以交換積分次序處理之。解法
原積分區域為 0\leq x\leq1、x\leq y\leq1 可改寫為 0\leq x\leq y、0\leq y\leq1,那麼所求的重積分可改寫並計算如下\begin{aligned}\int_0^1\int_x^1xe^{2y^3}dydx&=\int_0^1\int_0^yxe^{2y^3}dxdy\\&=\int_0^1\left.\frac{x^2}2e^{2y^3}\right|_0^ydy\\&=\frac12\int_0^1y^2e^{2y^3}dy\\&=\frac1{12}\int_0^1e^{2y^3}d(2y^3)\\&=\left.\frac{e^{2y^3}}{12}\right|_0^1\\&=\frac{e^2-1}{12}.\end{aligned}
訣竅
繪出示意圖後注意到應計算心臟線上半的面積扣去上半圓的面積,其中前可運用極座標求面積公式來計算之。解法
繪圖如下先運用極座標面積公式計算上半心臟線的面積如下\displaystyle\begin{aligned}A&=\frac12\int_0^{\pi}\left(1+\cos\theta\right)^2d\theta=\frac12\int_0^\pi\left(1+2\cos\theta+\cos^2\theta\right)d\theta\\&=\frac14\int_0^\pi\left(3+4\cos\theta+\cos2\theta\right)d\theta=\left.\frac14\left(3\theta+4\sin\theta+\frac{\sin2\theta}2\right)\right|_0^\pi=\frac{3\pi}4.\end{aligned}
因此所求面積為 \displaystyle\frac{3\pi}4-\frac\pi8=\frac{5\pi}8。訣竅
運用多變函數的連鎖律計算之。解法
直接運用連鎖律計算 w 對 r、對 s 以及對 t 的偏微分可知\displaystyle\begin{aligned}&\frac{\partial w}{\partial r}=\frac{\partial f}{\partial x}\left(r-s,s-t,t-r\right)\cdot1+\frac{\partial f}{\partial z}\left(r-s,s-t,t-r\right)\cdot\left(-1\right),\\&\frac{\partial w}{\partial s}=\frac{\partial f}{\partial x}\left(r-s,s-t,t-r\right)\cdot\left(-1\right)+\frac{\partial f}{\partial y}\left(r-s,s-t,t-r\right)\cdot1,\\&\frac{\partial w}{\partial t}=\frac{\partial f}{\partial y}\left(r-s,s-t,t-r\right)\cdot\left(-1\right)+\frac{\partial f}{\partial z}\left(r-s,s-t,t-r\right)\cdot1.\end{aligned}
如此三者相加可直接消去而恆為零,證明完畢。訣竅
根據提示運用分部積分法,為了清楚使用此法,可運用記號定義新函數來表示。解法
設 \displaystyle F\left(t\right)=\int_0^tf\left(z\right)dz,那麼由微積分基本定理可知 F'\left(t\right)=f\left(t\right)。據此由分部積分法可知\displaystyle\begin{aligned}\int_0^x\left(\int_0^tf\left(z\right)dz\right)dt&=\int_0^xF\left(t\right)dt\\&=tF\left(t\right)\Big|_{t=0}^{t=x}-\int_0^xtF'\left(t\right)dt\\&=x\int_0^xf\left(z\right)dz-\int_0^xtf\left(t\right)dt\\&=x\int_0^xf\left(t\right)dt-\int_0^xtf\left(t\right)dt\\&=\int_0^xf\left(t\right)\left(x-t\right)dt\end{aligned}
其中 \displaystyle\int_0^xf\left(z\right)dz=\int_0^xf\left(t\right)dt 係根據啞變數變換。訣竅
運用算術幾何不等式以及比較審歛法和已知的收斂級數求證之。解法
答案是肯定的,級數 \displaystyle\sum_{n=1}^\infty\frac{a_n}n 收斂。證明如下:首先注意到不等式\displaystyle\frac{a_n}n\leq\frac{a_n^2}2+\frac1{2n^2}.
那麼取和可知\displaystyle\sum_{n=1}^\infty\frac{a_n}n\leq\frac12\sum_{n=1}^{\infty}a_n^2+\frac12\sum_{n=1}^{\infty}\frac1{n^2}<\infty,
其中利用到了題目已知的條件和 p 級數在 p=2 時收斂。訣竅
注意到給定的邊界適合使用變數代換法求解,其中應留意 Jacobian 行列式的計算。解法
由邊界條件可以注意到使用這樣的變數代換,設 u=x-2y、v=2x+3y,那麼變數範圍為 2\leq u\leq5、1\leq v\leq3。再者,容易逆解得 \displaystyle x=\frac{3u+2v}7、\displaystyle y=-\frac{2u-v}7,如此 Jacobian 行列式值為\displaystyle\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}=\left|\begin{matrix}\displaystyle\frac37&\displaystyle\frac27\\\displaystyle-\frac27&\displaystyle\frac17\end{matrix}\right|=\frac17.
因此所求的重積分可以改寫並計算如下\displaystyle\begin{aligned}\int_Dy^2dA&=\int_1^3\int_2^5\left(-\frac{2u-v}7\right)^2\cdot\frac17dudv=\frac1{343}\int_1^3\int_2^5\left(4u^2-4uv+v^2\right)dudv\\&=\frac1{343}\int_1^3\left.\left(\frac43u^3-2u^2v+uv^2\right)\right|_{u=2}^{u=5}dv=\frac1{343}\int_1^3\left(156-42v+3v^2\right)dv\\&=\left.\frac1{343}\left(156v-21v^2+v^3\right)\right|_1^3=\frac{170}{343}.\end{aligned}
訣竅
運用 Green 定理求解即可;亦可參數化計算之。解法一
設 C 所包圍的區域為 D=\left\{\left(x,y\right)\in\mathbb R^2\,:\,x^2+y^2\leq1\right\},那麼由 Green 定理計算該線積分如下\displaystyle\begin{aligned}\int_C\left(-y+e^x\right)dx+\left(x^3+\sin y\right)dy&=\iint_D\left[\frac{\partial}{\partial x}\left(x^3+\sin y\right)-\frac{\partial}{\partial y}\left(-y+e^x\right)\right]dA\\&=\iint_D\left(3x^2+1\right)dA.\end{aligned}
運用極座標變換,令 x=r\cos\theta、y=r\sin\theta,其中變數範圍為 0\leq r\leq1、0\leq\theta\leq2。如此該線積分能夠化為如下並計算\displaystyle\begin{aligned}\int_C\left(-y+e^x\right)dx+\left(x^3+\sin y\right)dy&=\int_0^{2\pi}\int_0^1\left(3r^2\cos^2\theta+1\right)r\,dr\,d\theta\\&=\int_0^{2\pi}\left.\left(\frac{3r^4}4\frac{1+\cos2\theta}2+\frac{r^2}2\right)\right|_0^1d\theta\\&=\frac18\int_0^{2\pi}\left(7+3\cos2\theta\right)d\theta\\&=\left.\frac18\left(7\theta+\frac32\sin2\theta\right)\right|_0^{2\pi}\\&=\frac{7\pi}4.\end{aligned}
解法二
將曲線 C 參數化為 x=\cos\theta、y=\sin\theta,其中 0\leq\theta\leq2\pi,那麼線積分可表達如下\displaystyle\begin{aligned}\int_C\left(-y+e^x\right)dx+\left(x^3+\sin y\right)dy&=\int_0^{2\pi}\left[\left(-\sin\theta+e^{\cos\theta}\right)\cdot-\sin\theta+\left(\cos^3\theta+\sin\left(\sin\theta\right)\right)\cos\theta\right]d\theta\\&=\int_0^{2\pi}\left(\sin^2\theta+\cos^4\theta\right)d\theta+e^{\cos\theta}-\cos\left(\sin\theta\right)\Big|_0^{2\pi}\\&=\int_0^{2\pi}\left[\frac{1-\cos2\theta}2+\left(\frac{1+\cos2\theta}2\right)^2\right]d\theta\\&=\frac14\int_0^{2\pi}\left(3+\cos^22\theta\right)d\theta\\&=\frac18\int_0^{2\pi}\left(7+\cos4\theta\right)d\theta\\&=\left.\frac18\left(7\theta+\frac{\sin4\theta}4\right)\right|_0^{2\pi}=\frac{7\pi}4.\end{aligned}
沒有留言:
張貼留言