注意:請於答案卷上依序作答,並標明大題及其題號
- ($8$ points for each of the following $9$ blanks.)
- $\displaystyle\lim_{x\to0}\frac{\sin\left(2x\right)-2x}{x^3}=$ (1) .
- When $\displaystyle\left[f\left(x\right)\right]^2=36+\int_0^x\left\{\left[f\left(t\right)\right]^2+\left[f'\left(t\right)\right]^2\right\}dt$, it can be shown that $f\left(x\right)=af'\left(x\right)$. Then $a=$ (2) .
- The highest and lowest points on the curve $x^2+xy+y^2=12$ are (3) .
- $\displaystyle\int_0^3\frac{dx}{x^2-x-2}=$ (4) .
- The radius of convergence of the series $\displaystyle\sum_{n=1}^{\infty}\frac{\left(nx\right)^n}{n!}$ is (5) .
- $\displaystyle\int_0^1\int_y^1e^{\max\left\{x^2,y^2\right\}}dxdy=$ (6) , where $\max\left\{x^2,y^2\right\}$ means the larger of the numbers $x^2$ and $y^2$.
- It is known that $u=\sin\left(x-2t\right)+\ln\left(x+2t\right)$ is a solution of the equation $\partial^2u/\partial t^2=c\partial^2u/\partial x^2$. Then $c=$ (7) .
- The total production $P$ of a certain product depends on the amount $L$ of labor used and the amount $K$ os capital investment. When $P=cL^{\alpha}K^{1-\alpha}$, the maximum production occurs at $mL=\alpha p$ and $nK=$ (8) $p$ if $mL+nK=p$.
- Define $\displaystyle I\left(r\right)=\iint_D\frac1{x^2+y^2}dA$ where $D$ is the region bounded by the circles with center the origin and radius $r$ and $1$, $0<r<1$. $\displaystyle\lim_{R\to0}I\left(R\right)=$ (9) .
- ($14$ points)
- Find the maximum and minimum of $f\left(x,y\right)=2x^3+y^4$ over the region defined by $D=\left\{\left(x,y\right):x^2+y^2\leq1\right\}$.
- 若 $x=0$,那麼由第三式有 $y=\pm1$;
- 若 $y=0$,那麼由第三式有 $x=\pm1$;
- 若 $x\neq0$ 且 $y\neq0$,那麼有 $-3x=\lambda=-2y^2$,則第三式可寫為
$\displaystyle x^2+\frac32x-1=0$
可解得 $\displaystyle x=\frac12$ 或 $x=-2$。但 $x=-2$ 不合,因此得座標 $\displaystyle\left(\frac12,\pm\frac{\sqrt3}2\right)$。 - ($14$ points)
- Consider the function
$\displaystyle f\left(x,y,z\right)=\begin{cases}\displaystyle\frac{\left(x+y+2z\right)^{\alpha}}{x^2+y^2+z^2},&\mbox{if}~\left(x,y,z\right)\neq\left(0,0,0\right),\\0,&\mbox{if}~\left(x,y,z\right)=\left(0,0,0\right).\end{cases}$
Prove that $f\left(x,y,z\right)$ is continuous at $\left(0,0,0\right)$ when $\alpha>2$ and explain why $f\left(x,y,z\right)$ is not continuous at $\left(0,0,0\right)$ when $\alpha=2$.
訣竅
運用羅必達法則計算即可;亦可使用正弦函數的泰勒展開式求解。解法一
使用羅必達法則計算如下$\displaystyle\lim_{x\to0}\frac{\sin\left(2x\right)-2x}{x^3}=\lim_{x\to0}\frac{2\cos\left(2x\right)-2}{3x^2}=\lim_{x\to0}\frac{-4\sin\left(2x\right)}{6x}=\lim_{x\to0}\frac{-8\cos\left(2x\right)}6=-\frac43$
解法二
應用正弦函數的泰勒展開式可知$\displaystyle\lim_{x\to0}\frac{\sin\left(2x\right)-2x}{x^3}=\lim_{x\to0}\frac{\displaystyle\left(2x-\frac{\left(2x\right)^3}6+\cdots\right)-2x}{x^3}=\lim_{x\to0}\frac{\displaystyle-\frac43x^3+\cdots}{x^3}=-\frac43$
訣竅
使用微積分基本定理將積分號取消,整理可導得所欲求的關係式。解法
應用微積分基本定理與連鎖律可得$\displaystyle2f\left(x\right)f'\left(x\right)=\left[f\left(x\right)\right]^2+\left[f'\left(x\right)\right]^2$
移項可知$\left[f\left(x\right)-f'\left(x\right)\right]^2=\left[f\left(x\right)\right]^2-2f\left(x\right)f'\left(x\right)+\left[f'\left(x\right)\right]^2=0$
至此獲得 $f\left(x\right)=f'\left(x\right)$。故 $a=1$。訣竅
為了求出最高點與最低點,我們便要求 $y$ 的最大與最小值,故運用隱函數微分求使斜率為零的位置。解法
運用隱函數微分求導有$\displaystyle2x+y+x\frac{dy}{dx}+2y\frac{dy}{dx}=0$
若 $\displaystyle\frac{dy}{dx}=0$,則應有 $2x+y=0$,那麼由原方程可得 $x^2+x\cdot\left(-2x\right)+\left(-2x\right)^2=12$,即 $3x^2=12$,故得 $x=\pm2$,從而 $y=\mp4$,故最高點為 $\left(-2,4\right)$,最低點為 $\left(2,-4\right)$。訣竅
注意被積分函數在該區間是否有瑕疵,若無則逕自使用部分分式法求積分,若有則應按瑕積分的定義處理之。解法
由於分母可因式分解為 $x^2-x-2=\left(x-2\right)\left(x+1\right)$,故此積分在 $x=2$ 處有瑕疵。故應將此瑕積分分拆為兩段來處理:$\displaystyle\int_0^3\frac{dx}{x^2-x-2}=\int_0^{2^-}\frac{dx}{\left(x-2\right)\left(x+1\right)}+\int_{2^+}^3\frac{dx}{\left(x-2\right)\left(x+1\right)}$
然而可以發現$\displaystyle\int{2^+}^3\frac{dx}{\left(x-2\right)\left(x+1\right)}=\frac13\lim_{s\to2^+}\int_s^3\left(\frac1{x-2}-\frac1{x+1}\right)dx=\frac13\lim_{s\to2^+}\ln\frac{t+1}{4t-8}=+\infty$
故給定的瑕積分發散。訣竅
運用比值審歛法的思想去計算收斂半徑。解法
設 $\displaystyle a_n=\frac{n^n}{n!}$,那麼收斂半徑為$\displaystyle\begin{aligned} R&=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\left(\frac{n^n}{n!}\div\frac{\left(n+1\right)^{n+1}}{\left(n+1\right)!}\right)\\&=\lim_{n\to\infty}\left(\frac{n}{n+1}\right)^n=\lim_{n\to\infty}\left[\left(1-\frac1{n+1}\right)^{-\left(n+1\right)}\right]^{-1}\left(1-\frac1{n+1}\right)^{-1}=e^{-1}\end{aligned}$
訣竅
交換積分次序計算即可。解法
首先由積分區域的限制中有 $y\leq x$,故被積分函數可寫為 $e^{\max\left\{x^2,y^2\right\}}=e^{x^2}$。再者積分區域 $\left\{\begin{aligned}&y\leq x\leq1\\&0\leq y\leq1\end{aligned}\right.$ 可改寫為 $\left\{\begin{aligned}&0\leq x\leq1\\&0\leq y\leq x\end{aligned}\right.$,如此所求的重積分可改寫並計算如下$\displaystyle\int_0^1\int_y^1e^{\max\left\{x^2,y^2\right\}}dxdy=\int_0^1\int_0^xe^{x^2}dydx=\int_0^1xe^{x^2}dx=\left.\frac{e^{x^2}}2\right|_0^1=\frac{e-1}2$
訣竅
直接計算偏導函數並案題目的條件即可求出 $c$。解法
直接求一階偏導函數有$\displaystyle\begin{aligned}&\frac{\partial u}{\partial t}=-2\cos\left(x-2t\right)+\frac2{x+2t}\\&\frac{\partial u}{\partial x}=\cos\left(x-2t\right)+\frac1{x+2t}\end{aligned}$
進一步求二階偏導函數有$\displaystyle\begin{aligned}&\frac{\partial^2u}{\partial t^2}=-4\cos\left(x-2t\right)-\frac4{\left(x+2t\right)^2}\\&\frac{\partial^2u}{\partial x^2}=-\sin\left(x-2t\right)-\frac1{\left(x+2t\right)^2}\end{aligned}$
因此觀察兩偏導函數可知$\displaystyle\frac{\partial^2u}{\partial t^2}=-4\frac{\partial^2u}{\partial x^2}$
故 $c=-4$。訣竅
釐清題意後可立即作答。解法
由於 $mL+nK=p$ 且 $mL=\alpha p$,故 $nK=\left(1-\alpha\right)p$。訣竅
運用極座標變換計算出該重積分後再取極限即可。解法
使用極座標變換,令 $\left\{\begin{aligned}&x=\rho\cos\theta\\&y=\rho\sin\theta\end{aligned}\right.$,其中變數範圍為 $\left\{\begin{aligned}&r\leq\rho\leq1\\&0\leq\theta\leq2\pi\end{aligned}\right.$,那麼給定的重積分可改寫並計算如下$\displaystyle I\left(r\right)=\iint_D\frac1{x^2+y^2}dA=\int_0^{2\pi}\int_r^1\frac1{\rho^2}\cdot\rho d\rho d\theta=2\pi\int_r^1\frac{d\rho}{\rho}=-2\pi\ln r$
那麼所求為$\displaystyle\lim_{R\to0}I\left(R\right)=-2\pi\lim_{R\to0}\ln R=\infty$
訣竅
在圓盤內部可解一階偏導為零的位置,而在邊界上則可運用拉格朗日乘子法解條件極值。解法
首先考慮圓盤內部的極值,為此求一階偏導函數值為零的位置,即解方程組
$\left\{\begin{aligned}&f_x\left(x,y\right)=6x^2=0\\&f_y\left(x,y\right)=4y^3=0\end{aligned}\right.$
可解得 $\left(x,y\right)=\left(0,0\right)$。現於邊界上解極值問題。設定拉格朗日乘子函數如下
$F\left(x,y,\lambda\right)=2x^3+y^4+\lambda\left(x^2+y^2-1\right)$
據此解下列的聯立方程組$\left\{\begin{aligned}&F_x\left(x,y,\lambda\right)=6x^2+2\lambda x=0\\&F_y\left(x,y,\lambda\right)=4y^3+2\lambda y=0\\&F_{\lambda}\left(x,y,\lambda\right)=x^2+y^2-1=0\end{aligned}\right.$
由第一式可知 $x=0$ 或 $\lambda=-3x$,而由第二式則知 $y=0$ 或 $\lambda=-2y^2$。$\displaystyle f\left(0,0\right)=0,\quad f\left(0,\pm1\right)=1,\quad f\left(\pm1,0\right)=\pm2,\quad f\left(\frac12,\pm\frac{\sqrt3}2\right)=\frac{13}{16}$
因此最大值為 $2$,而最小值為 $-2$。訣竅
當 $\alpha>2$ 時為了證明其連續性,應使用夾擠定理證明之;而當 $\alpha=2$ 時則可取出一路徑使其逼近的對象不為極限值。解法
若 $\alpha>2$,那麼由柯西不等式觀察可知
$\displaystyle\left(x^2+y^2+z^2\right)\left(1^2+1^2+2^2\right)\geq\left(x+y+2z\right)^2$
整理有$\displaystyle\frac{\left(x+y+2z\right)^{\alpha}}{x^2+y^2+z^2}\leq6\left(x+y+2z\right)^{\alpha-2}\leq6\cdot\left[6\left(x^2+y^2+z^2\right)\right]^{\frac{\alpha-2}2}=6^{\frac{\alpha}2}\left(x^2+y^2+z^2\right)^{\frac{\alpha-2}2}$
因此對於任意給定的 $\varepsilon>0$ 可取 $\delta=6^{-\frac{\alpha}{2\alpha-4}}\varepsilon^{\frac1{\alpha-2}}$,那麼當 $0<\left|\left(x,y,z\right)-\left(0,0,0\right)\right|=\sqrt{x^2+y^2+z^2}<\delta$ 時有$\left|f\left(x,y,z\right)-f\left(0,0,0\right)\right|<\varepsilon$
這就證明了 $\displaystyle\lim_{\left(x,y,z\right)\to\left(0,0,0\right)}f\left(x,y,z\right)=f\left(0,0,0\right)$,故此時 $f$ 在 $\left(0,0,0\right)$ 連續。而當 $\alpha=2$ 時,考慮通過原點的直線 $\left\{\begin{aligned}&x=t\\&y=0\\&z=0\end{aligned}\right.$,那麼 $f\left(t,0,0\right)\equiv1$,故 $\displaystyle\lim_{t\to0}f\left(t,0,0\right)=1\neq0=f\left(0,0,0\right)$。因此當 $\alpha=2$ 時 $f$ 不為連續函數。
沒有留言:
張貼留言