- ($8$ points for each of the following $9$ blanks.)
- $\displaystyle\lim_{x\to\infty}x\frac{\displaystyle\int_x^{\infty}e^{-t^2/6}dt}{e^{-x^2/6}}=$ (1) .
- $\displaystyle\lim_{n\to\infty}\left(1-\frac{\cos\left(3/n\right)}{2n}\right)^n=$ (2) .
- When $dg\left(x\right)/dx=1+\left[g\left(x\right)\right]^2$ and $g\left(0\right)=0$, then $g\left(x\right)=$ (3) .
- When $a=$ (4) , $\displaystyle\int_1^{\infty}\left(\frac{ax}{x^2+x+1}-\frac1{2x}\right)dx$ converges.
- Find $ab=$ (5) such that $\displaystyle\int_a^b\left(24-2x-x^2\right)^{1/3}dx$ has its largest value.
- $\displaystyle\int_1^e\int_1^x\int_0^z\frac{2y}{z^3}dydzdx=$ (6) .
- It is known that $r=\sqrt{x^2+y^2+z^2}$. Then $r\left(\partial^2r/\partial x^2+\partial^2r/\partial y^2+\partial^2r/\partial z^2\right)-\left(\left(\partial r/\partial x\right)^2+\left(\partial r/\partial y\right)^2+\left(\partial r/\partial z\right)^2\right)=$ (7) .
- The plane $z=Ax+By+C$ is said to be fitted to the points $\left(x_1,y_1,z_1\right),\cdots,\left(x_n,y_n,z_n\right)$ when $A$, $B$ and $C$ minimize $\displaystyle\sum_{i=1}^n\left(Ax_i+By_i+C-z_i\right)^2$. Due to the nature of the problem, it is known that $A\leq10$. When $\displaystyle\sum_{i=1}^nx_i=0$, $\displaystyle\sum_{i=1}^ny_i=0$, and $\displaystyle\sum_{i=1}^nx_iy_i=0$, $A=$ (8) .
- $\displaystyle\int_0^1\int_{y^2}^1e^{\sqrt{x}}dxdy=$ (9) .
- 當 $x=0$ 時有 $u=0$;
- 當 $x=1$ 時有 $u=1$;
- 平方有 $x=u^2$,求導可得 $dx=2udu$。
- 當 $x=y^2$ 時有 $u=y$;
- 當 $x=1$ 時有 $u=1$;
- 平方可得 $x=u^2$,求導有 $dx=2udu$。
- ($14$ points)
- The profit of buying $a$ units of stock and $b$ units of bond can be described by a function $W\left(a,b\right)=\sqrt2e^{-b}\cos a$. A profit-driven individual with $a$ units of stock and $b$ units of bond will move in the direction of maximum profit increase. Find the equation $b=f\left(a\right)$ for the path of a profit-seeking individual starting with $a=\pi/4$ and $b=0$.
- ($14$ points)
- A bowl is in the shape of the graph of $z=x^2+y^2$ from $z=0$ to $z=10$ inches. You plan to calibrate the bowl to make it into a rain gauge. Assume that the rain falls into the bowl vertically. Determine the height in the bowl which corresponds to $1$ inch of rain.
訣竅
運用羅必達法則搭配微積分基本定理求解即可。解法
將極限式寫為如下後使用羅必達法則與微積分基本定理:$\displaystyle\lim_{x\to\infty}x\frac{\displaystyle\int_x^{\infty}e^{-t^2/6}dt}{e^{-x^2/6}}=\lim_{x\to\infty}\frac{\displaystyle\int_x^{\infty}e^{-t^2/6}dt}{x^{-1}e^{-x^2/6}}=\lim_{x\to\infty}\frac{-e^{-x^2/6}}{\displaystyle-x^{-2}e^{-x^/6}-\frac{e^{-x^2/6}}3}=\lim_{x\to\infty}\frac1{\displaystyle\frac13+x^{-2}}=3$
訣竅
運用換底公式後使用羅必達法則求解。解法
將極限式改寫後使用羅必達法則如下$\displaystyle\begin{aligned}\lim_{n\to\infty}\left(1-\frac{\cos\left(3/n\right)}{2n}\right)^n&=\lim_{n\to\infty}\exp\left[n\ln\left(1-\frac{\cos\left(3/n\right)}{2n}\right)\right]=\exp\left[\lim_{n\to\infty}\frac{\displaystyle\ln\left(1-\frac{\cos\left(3/n\right)}{2n}\right)}{\displaystyle\frac1n}\right]\\&=\exp\left[\lim_{n\to\infty}\frac{\displaystyle\frac1{1-\frac{\cos\left(3/n\right)}{2n}}\cdot-\frac{6\sin\left(3/n\right)/n-2\cos\left(3/n\right)}{4n^2}}{\displaystyle-\frac1{n^2}}\right]\\&=\exp\left[\lim_{n\to\infty}\frac{\displaystyle\frac{6\sin\left(3/n\right)}n-2\cos\left(\frac3n\right)}{\displaystyle4-\frac{2\cos\left(3/n\right)}n}\right]=\exp\left(\frac{-2}4\right)=e^{-1/2}=\frac1{\sqrt{e}}\end{aligned}$
【註】 一個簡單的觀察是,底數 $\displaystyle1-\frac{\cos\left(3/n\right)}{2n}$ 當 $n$ 極大時,幾乎類似於 $\displaystyle1-\frac1{2n}$,而 $\displaystyle\lim_{n\to\infty}\left(1-\frac1{2n}\right)^n=e^{-1/2}$,由此可立即看出所求。
訣竅
運用分離變量法取積分即可。解法
移項有$\displaystyle\frac{dg\left(x\right)}{1+\left[g\left(x\right)\right]^2}=dx$
在 $\left[0,x\right]$ 取定積分有$\tan^{-1}\left(g\left(x\right)\right)-\tan^{-1}\left(g\left(0\right)\right)=x$
因此 $g\left(x\right)=\tan x$。訣竅
直接按定義計算其瑕積分即可。解法
直接按定義計算其瑕積分有$\displaystyle\begin{aligned}\int_1^{\infty}\left(\frac{ax}{x^2+x+1}-\frac1{2x}\right)dx&=\lim_{t\to\infty}\int_1^t\left(\frac12\frac{a\left(2x+1\right)}{x^2+x+1}-\frac{a/2}{\left(x+\frac12\right)^2+\left(\frac{\sqrt3}2\right)^2}-\frac1{2x}\right)dx\\&=\lim_{t\to\infty}\left.\left(\frac{a}2\ln\left(x^2+x+1\right)-\frac{a}{\sqrt3}\tan^{-1}\frac{2x+1}{\sqrt3}-\frac{\ln x}2\right)\right|_1^t\\&=\frac{\pi a}{3\sqrt3}-\frac{a}2\ln3+\lim_{t\to\infty}\left(\frac{a}2\ln\left(t^2+t+1\right)-\frac{a}{\sqrt3}\tan^{-2}\frac{2t+1}{\sqrt3}-\frac{\ln t}2\right)\end{aligned}$
由於 $\displaystyle\lim_{t\to\infty}\tan^{-1}\frac{2t+1}{\sqrt3}=\frac\pi2$,故僅需留意$\displaystyle\lim_{t\to\infty}\left(a\ln\left(t^2+t+1\right)-\ln t\right)=\lim_{t\to\infty}\ln\frac{\left(t^2+t+1\right)^a}t=\begin{cases}\infty,&\mbox{if}~a>1/2,\\0,&\mbox{if}~a=1/2,\\-\infty,&\mbox{if}~a<1/2.\end{cases}$
故當且僅當 $a=1/2$ 時瑕積分收斂。【註】 對於被積分函數可以通分改寫為
$\displaystyle\frac{ax}{x^2+x+1}-\frac1{2x}=\frac{\left(2a-1\right)x^2-x-1}{2x\left(x^2+x+1\right)}$
假若 $a\neq1/2$,則分子近乎為二次函數,而分母則近乎為三次函數,故整體近乎為 $\displaystyle\frac1x$,但這個函數在 $\left[1,\infty\right)$ 上的瑕積分不收斂,而當 $a=1/2$ 時則整體函數近乎為 $\displaystyle\frac1{x^2}$,此時在 $\left[1,\infty\right)$ 上的瑕積分收斂。訣竅
為了讓這個定積分產生最大的值,我們盡使被積分函數的值為正的區間較多而函數值為負的區間較少。解法
由於 $24-2x-x^2=-\left(x-4\right)\left(x+6\right)$,故 $24-2x-x^2\geq0$ 的解為 $-6\leq x\leq4$,從而取 $a=-6$ 而 $b=4$ 可使該定積分有最大值。訣竅
直接計算迭代積分即可。解法
直接依序計算迭代積分如下$\displaystyle\begin{aligned}\int_1^e\int_1^x\int_0^z\frac{2y}{z^3}dydzdx&=\int_1^e\int_1^x\left.\frac{y^2}{z^3}\right|_0^zdzdx=\int_1^e\int_1^x\frac{dz}zdx\\&=\int_1^e\ln z\Big|_1^xdx=\int_1^e\ln xdx=\left(x\ln x-x\right)\Big|_1^e=1\end{aligned}$
訣竅
使用多變函數的連鎖律計算即可。解法
首先計算一階偏導函數有$\displaystyle\frac{\partial r}{\partial x}=\frac{x}{\sqrt{x^2+y^2+z^2}},\qquad\frac{\partial r}{\partial y}=\frac{y}{\sqrt{x^2+y^2+z^2}},\qquad\frac{\partial r}{\partial z}=\frac{z}{\sqrt{x^2+y^2+z^2}}$
接著進一步計算二階偏導函數有$\displaystyle\begin{aligned}&\frac{\partial^2r}{\partial x^2}=\frac1{\sqrt{x^2+y^2+z^2}}-\frac{x^2}{\left(x^2+y^2+z^2\right)^{3/2}}\\&\frac{\partial^2r}{\partial y^2}=\frac1{\sqrt{x^2+y^2+z^2}}-\frac{y^2}{\left(x^2+y^2+z^2\right)^{3/2}}\\&\frac{\partial^2r}{\partial z^2}=\frac1{\sqrt{x^2+y^2+z^2}}-\frac{z^2}{\left(x^2+y^2+z^2\right)^{3/2}}\end{aligned}$
因此三者之和為$\displaystyle\frac{\partial^2r}{\partial x^2}+\frac{\partial^2r}{\partial y^2}+\frac{\partial^2r}{\partial z^2}=\frac3{\sqrt{x^2+y^2+z^2}}-\frac{x^2+y^2+z^2}{\left(x^2+y^2+z^2\right)^{3/2}}=\frac2{\sqrt{x^2+y^2+z^2}}$
另一方面,將一階偏導函數平方後求和有$\displaystyle\left(\frac{\partial r}{\partial x}\right)^2+\left(\frac{\partial r}{\partial y}\right)^2+\left(\frac{\partial r}{\partial z}\right)^2=\frac{x^2}{x^2+y^2+z^2}+\frac{y^2}{x^2+y^2+z^2}+\frac{z^2}{x^2+y^2+z^2}=1$
故所求為$\displaystyle r\left(\frac{\partial^2r}{\partial x^2}+\frac{\partial^2r}{\partial y^2}+\frac{\partial^2r}{\partial z^2}\right)-\left(\left(\frac{\partial r}{\partial x}\right)^2+\left(\frac{\partial r}{\partial y}\right)^2+\left(\frac{\partial r}{\partial z}\right)^2\right)=r\cdot\frac2r-1=1$
訣竅
按照情境,這些條件使平方和達到極小值,故滿足一階偏導為零。解法
設 $\displaystyle F\left(A,B,C\right)=\sum_{i=1}^n\left(Ax_i+By_i+C-z_i\right)^2$。由於要使 $F$ 達到極小,我們應解聯立式$\displaystyle\frac{\partial F}{\partial A}=\frac{\partial F}{\partial B}=\frac{\partial F}{\partial C}=0$
即$\displaystyle\left\{\begin{aligned}&2\sum_{i=1}^n\left(Ax_i+By_i+C-z_i\right)x_i=0\\&2\sum_{i=1}^n\left(Ax_i+By_i+C-z_i\right)y_i=0\\&2\sum_{i=1}^n\left(Ax_i+By_i+C-z_i\right)=0\end{aligned}\right.$
特別地,由第一式可以看出$\displaystyle A\sum_{i=1}^nx_i^2+B\sum_{i=1}^nx_iy_i+C\sum_{i=1}^nx_i-\sum_{i=1}^nx_iz_i=0$
因此 $\displaystyle A=\frac{\displaystyle\sum_{i=1}^nx_iz_i}{\displaystyle\sum_{i=1}^nx_i^2}$。【註】 另外兩式分別給出 $\displaystyle B=\frac{\displaystyle\sum_{i=1}^ny_iz_i}{\displaystyle\sum_{i=1}^ny_i^2}$,$\displaystyle C=\frac1n\sum_{i=1}^nz_i$。
訣竅
交換積分次序後即可計算;亦可直接運用變數變換來簡化積分後直接計算。【本題同九十二年微積分(不含線性代數)的考題】解法一
原積分範圍 $\left\{\begin{aligned}&y^2\leq x\leq1\\&0\leq y\leq1\end{aligned}\right.$ 可改寫為 $\left\{\begin{aligned}&0\leq x\leq\\&0\leq y\leq\sqrt{x}\end{aligned}\right.$,據此所求的重積分可改寫並計算如下$\displaystyle\int_0^1\int_{y^2}^1e^{\sqrt{x}}dxdy=\int_0^1\int_0^{\sqrt{x}}e^{\sqrt{x}}dydx=\int_0^1\sqrt{x}e^{\sqrt{x}}dx$
令 $u=\sqrt{x}$,那麼$\displaystyle\begin{aligned}\int_0^1\int_{y^2}^1e^{\sqrt{x}}dxdy&=\int_0^1ue^u\cdot2udu=2\int_0^1u^2de^u=2\left(u^2e^u\Big|_0^1-2\int_0^1ue^udu\right)\\&=2e-4\int_0^1ude^u=2e-4\left(ue^u\Big|_0^1-\int_0^1e^udu\right)\\&=-2e+4e^u\Big|_0^1=2e-4\end{aligned}$
解法二
令 $u=\sqrt{x}$,那麼便有$\displaystyle\begin{aligned}\int_0^1\int_{y^2}1e^{\sqrt{x}}dxdy&=\int_0^1\int_y^1e^u\cdot2ududy=2\int_0^1\int_y^1ude^udy=2\int_0^1\left(ue^u\Big|_y^1-\int_y^1e^udu\right)dy\\&=2\int_0^1\left(e^y-ye^y\right)dy=2\left(2e^y-ye^y\right)\Big|_0^1=2e-4\end{aligned}$
訣竅
為了讓獲利增加盡可能的快,我們沿著梯度的方向前進。解法
先計算 $W$ 的梯度如下$\nabla W\left(a,b\right)=\left(W_a\left(a,b\right),W_b\left(a,b\right)\right)=\left(-\sqrt2e^{-b}\sin a,-\sqrt2e^{-b}\cos a\right)$
故最佳增加路徑的切向量與上述向量平行,即有$\displaystyle f'\left(a\right)=\frac{W_b\left(a,b\right)}{W_a\left(a,b\right)}=\frac{-\sqrt2e^{-b}\cos a}{-\sqrt2e^{-b}\sin a}=\cot a$
故 $f\left(a\right)=\ln\left|\sin a\right|+C$,其中 $C$ 為待定常數。由於通過座標 $\displaystyle\left(\frac\pi4,0\right)$,故 $C=\ln\sqrt2$。從而所求為 $f\left(a\right)=\ln\left(\sqrt2\sin a\right)$。訣竅
根據題意表達出所描述的區域,從而列出積分式來表達高度。解法
首先注意到碗口的圓為 $x^2+y^2=10$,即圓心在 $\left(0,0,10\right)$ 而半徑為 $\sqrt{10}$ 的圓。而一英吋的雨表明累積雨量具有 $1\cdot10\pi=10\pi$ 立方英吋的體積。
假若在碗中形成的高度為 $h$,那麼在碗中所佔據的區域為
$\Omega=\left\{\left(x,y,z\right)\in\mathbb{R}^3:~x^2+y^2\leq z\leq h\right\}$
設 $D=\left\{\left(x,y\right)\in\mathbb{R}^2:~x^2+y^2\leq h\right\}$,那麼體積列式並使用極座標計算如下$\displaystyle\begin{aligned}10\pi=\iiint_{\Omega}dV&=\iint_{D}\left(h-x^2-y^2\right)dA=\int_0^{2\pi}\int_0^{\sqrt{h}}\left(h-r^2\right)rdrd\theta\\&=2\pi\int_0^{\sqrt{h}}\left(hr-r^3\right)dr=\left.2\pi\left(\frac{hr^2}2-\frac{r^4}4\right)\right|_0^{\sqrt{h}}=\frac{\pi h^2}2\end{aligned}$
從而解得 $h=2\sqrt5$ (負不合),故碗中的雨水高為 $2\sqrt5$ 英吋。
沒有留言:
張貼留言