2020年2月17日 星期一

國立臺灣大學九十五學年度研究所碩士班入學考試試題:微積分(不含線性代數)

  1. ($7\%$)
    Prove that if $p>1$ and $x>0$, $x^p-1\geq p\left(x-1\right)$.
  2. 訣竅運用函數的單調性來證明不等式。
    解法設 $f\left(x\right)=x^p-1-p\left(x-1\right)$,那麼求導可知

    $f'\left(x\right)=px^{p-1}-p=p\left(x^{p-1}-1\right)$

    可以看出當 $x\in\left(0,1\right)$ 時有 $f'\left(x\right)<0$,而當 $x\in\left(1,\infty\right)$ 時有 $f'\left(x\right)>0$,故 $f$ 在 $x=1$ 處達到最小值,因此 $f\left(x\right)\geq f\left(1\right)=0$,即有

    $x^p-1-p\left(x-1\right)\geq0$

    移項便完成證明。

  3. ($7\%$)
    Find the point of the hyperbola $\displaystyle y^2-\frac{x^2}2=1$ that is nearest to $\displaystyle\left(x,y\right)=\left(0,3\right)$, where the distance between a point $\left(a,b\right)$ and the origin $\left(0,0\right)$ is defined as $\sqrt{a^2+b^2}$ in the $2$-dimensional Euclidean space.
  4. 訣竅考慮距離函數後應用基本的配方法即可求解。
    解法考慮 $\left(x,y\right)$ 與 $\left(0,3\right)$ 的距離函數為

    $\displaystyle d\left(x,y\right)=\sqrt{\left(x-0\right)^2+\left(y-3\right)^2}=\sqrt{x^2+\left(y-3\right)^2}$

    由於 $\left(x,y\right)$ 落於雙曲線 $\displaystyle y^2-\frac{x^2}2=1$ 上,故距離函數 $d$ 可改寫如下

    $d\left(x,y\right)=\sqrt{x^2+\left(y-3\right)^2}=\sqrt{\left(2y^2-2\right)+\left(y^2-6y+9\right)}=\sqrt{3y^2-6y+7}=\sqrt{3\left(y-1\right)^2+4}\geq\sqrt4=2$

    故最近的距離為 $2$,而等號成立條件為 $y=1$、$x=0$。

  5. ($7\%$)
    Let $\displaystyle h\left(t\right)=\frac7{12}t^3+t+1$, $g\left(t\right)=t^3-2t^2+3t$, and $f\left(t\right)=\left(t-5\right)+\log_et$, where $\log_e$ denotes the natural logarithm. Evaluate the second derivative of $f\left(g\left(h\left(x\right)\right)\right)$ at $x=0$.
  6. 訣竅由連鎖律細心計算之。
    解法先對題目給定的函數求導有

    $\displaystyle h'\left(t\right)=\frac74t^2+1,\quad g'\left(t\right)=3t^2-4t+3,\quad f'\left(t\right)=1+\frac1t$

    而其二階導函數則為

    $\displaystyle h''\left(t\right)=\frac72t,\quad g''\left(t\right)=6t-4,\quad f''\left(t\right)=-\frac1{t^2}$

    設 $k\left(x\right)=f\left(g\left(h\left(x\right)\right)\right)$,那麼由連鎖律可知

    $k'\left(x\right)=f'\left(g\left(h\left(x\right)\right)\right)g'\left(h\left(x\right)\right)h'\left(x\right)$

    進一步地,再利用連鎖律求導則有

    $k''\left(x\right)=f''\left(g\left(h\left(x\right)\right)\right)\left[g'\left(h\left(x\right)\right)h'\left(x\right)\right]^2+f'\left(g\left(h\left(x\right)\right)\right)g''\left(h\left(x\right)\right)\left[h'\left(x\right)\right]^2+f'\left(g\left(h\left(x\right)\right)\right)g'\left(h\left(x\right)\right)h''\left(x\right)$

    取 $x=0$ 有

    $\displaystyle\begin{aligned}k''\left(0\right)&=f''\left(g\left(h\left(0\right)\right)\right)\left[g'\left(h\left(0\right)\right)h'\left(0\right)\right]^2+f'\left(g\left(h\left(0\right)\right)\right)g''\left(h\left(0\right)\right)\left[h'\left(0\right)\right]^2+f'\left(g\left(h\left(0\right)\right)\right)g'\left(h\left(0\right)\right)h''\left(0\right)\\&=f''\left(g\left(1\right)\right)\left[g'\left(1\right)\cdot1\right]^2+f'\left(g\left(1\right)\right)g''\left(1\right)\cdot1^2+f'\left(g\left(1\right)\right)g'\left(1\right)\cdot0\\&=f''\left(2\right)\cdot2^2+f'\left(2\right)\cdot2\\&=-1+3=2\end{aligned}$


  7. ($9\%$; $3\%$ each)
    Prove or disprove that the limit of each of the following functions exists when $x$ approaches to zero, i.e., $\displaystyle\lim_{x\to0}f\left(x\right)$.
    4-a

    $\displaystyle f\left(x\right)=\frac1x,~x\in\left[-1,1\right]$

    4-b

    $\displaystyle f\left(x\right)=\begin{cases}1&\mbox{if}~=0\\x^2&\mbox{otherwise}\end{cases},~x\in\left[-1,1\right]$

    4-c

    $\displaystyle f\left(x\right)=\mbox{the integer part of}~\left(1+x\right),~x\in\left[-1,1\right]$

  8. 訣竅利用嚴格的 $\varepsilon-\delta$ 語言去說明函數的發散與收斂。
    解法

    4-a. 給定正實數 $M>0$,由阿基米得原理可取出實數 $\displaystyle0<x<\frac1M$,如此有

    $\displaystyle0<x<\min\left\{\frac1M,1\right\}~~\Longrightarrow~~f\left(x\right)>M$

    此即 $\displaystyle\lim_{x\to0^+}f\left(x\right)=\infty$。類似地,我們有 $\displaystyle\lim_{x\to0^-}f\left(x\right)=-\infty$。故極限 $\displaystyle\lim_{x\to0}f\left(x\right)$ 不存在。

    4-b. 給定正實數 $\varepsilon>0$,我們取 $\delta=\min\left\{\sqrt{\varepsilon},1\right\}$,那麼

    $0<x<\delta~~\Longrightarrow~~\left|f\left(x\right)-0\right|=x^2<\delta^2=\varepsilon$

    因此極限 $\displaystyle\lim_{x\to0}f\left(x\right)=0$。

    4-3. 當 $x\in\left[0,1\right)$時 $f\left(x\right)=1$,而當 $x\in\left[-1,0\right)$ 時 $f\left(x\right)=0$,從而有

    $\displaystyle\lim_{x\to0^+}f\left(x\right)=1,\qquad\lim_{x\to0^-}f\left(x\right)=0$

    由於左右極限不相同,故極限 $\displaystyle\lim_{x\to0}f\left(x\right)$ 不存在。


  9. ($10\%$)
    Suppose that $\lambda>0$, please solve

    $\displaystyle\lim_{\lambda\to0}\lambda\int_{\lambda^2}^{\lambda}\frac{\cos\left(x\right)}{x^{3/2}}dx$.

    [Hint] Application of the mean value theorem of the integral calculus: If $f\left(x\right)$ and $g\left(x\right)$ are continuous functions in $a\leq x\leq b$ and $g\left(x\right)\geq0$, then $\displaystyle\int_a^bf\left(x\right)g\left(x\right)dx=f\left(\xi\right)\int_a^bg\left(x\right)dx$, where $a\leq\xi\leq b$.
  10. 訣竅按提示使用積分均值定理,其中我們在使用時特別留意到餘弦函數的有界性。最後搭配夾擠定理求出其極限。
    解法由積分均值定理可知

    $\displaystyle\int_{\lambda^2}^{\lambda}\frac{\cos\left(x\right)}{x^{3/2}}dx=\cos\left(\xi_{\lambda}\right)\int_{\lambda^2}^{\lambda}\frac{dx}{x^{3/2}}=2\left(\lambda^{-1}-\lambda^{-1/2}\right)\cos\left(\xi_{\lambda}\right)$

    其中 $\xi_{\lambda}\in\left(\lambda^2,\lambda\right)$ 為與 $\lambda$ 有關的常數。那麼當 $\lambda$ 趨於零時由夾擠可知 $\displaystyle\lim_{\lambda\to0}\xi_{\lambda}=0$。故所求的極限有

    $\displaystyle\lim_{\lambda\to0}\lambda\int_{\lambda^2}^{\lambda}\frac{\cos\left(x\right)}{x^{3/2}}dx=\lim_{\lambda\to0}\left(2-2\sqrt{\lambda}\right)\cos\left(\xi_{\lambda}\right)=\left(2-2\cdot0\right)\cos\left(0\right)=2$


  11. ($10\%$)
    If $\displaystyle\lim_{x\to a}\frac{2x^2+bx+3b}{2x-2a}=8$, then $\left(a,b\right)=$?
  12. 訣竅使用極限的四則運算性質求解。
    解法由四則運算性質可知

    $\displaystyle2a^2+ab+3b=\lim_{x\to a}\left(2x^2+bx+3b\right)=\lim_{x\to a}\left[\frac{2x^2+bx+3b}{2x-2a}\cdot\left(2x-2a\right)\right]=8\cdot0=0$

    因此有 $3b=-2a^2-ab$。據此題目中給定的極限可寫為

    $\displaystyle8=\lim_{x\to a}\frac{2x^2+bx+3b}{2x-2a}=\lim_{x\to a}\frac{2x^2+bx-2a^2-ab}{2x-2a}=\lim_{x\to a}\left(x+a+\frac{b}2\right)$

    因此有 $\displaystyle2a+\frac{b}2=8$,即 $4a+b=16$。由 $b=16-4a$ 代入 $2a^2+ab+3b=0$ 有

    $2a^2+a\left(16-4a\right)+3\left(16-4a\right)=0$

    即 $a^2-2a-24=0$,可解得 $a=6$ 或 $a=-4$,從而有 $b=-8$ 或 $b=32$。

    檢驗如下

    • 若 $a=6$ 且 $b=-8$,那麼給定的極限寫為

      $\displaystyle\lim_{x\to6}\frac{2x^2-8x-24}{2x-12}=\lim_{x\to6}\frac{2\left(x-6\right)\left(x+2\right)}{2\left(x-6\right)}=8$

      成立
    • 若 $a=-4$ 且 $b=32$,那麼給定的極限寫為

      $\displaystyle\lim_{x\to-4}\frac{2x^2+32x+96}{2x+8}=\lim_{x\to-4}\frac{2\left(x+4\right)\left(x+12\right)}{2\left(x+4\right)}=8$

      成立。

    因此 $\left(a,b\right)=\left(6,-8\right)$ 或 $\left(-4,32\right)$。

  13. ($10\%$)
    If the inverse function of $f\left(x\right)$ is $\displaystyle f^{-1}\left(x\right)=\int_{\frac2\pi}^{\sqrt{x}}e^t\left(\frac{\sin\left(\frac1t\right)+t^2\cos\left(\frac1t\right)}{t^2}\right)dt$, then $\displaystyle f'\left[f^{-1}\left(\frac{16}{\pi^2}\right)\right]=$?
  14. 訣竅運用反函數的定義、連鎖律與微積分基本定理求解。
    解法由反函數的定義可知 $f\left(f^{-1}\left(x\right)\right)=x$,使用連鎖律求導有

    $f'\left[f^{-1}\left(x\right)\right]\left(f^{-1}\right)'\left(x\right)=1$

    再者由微積分基本定理可知

    $\displaystyle\left(f^{-1}\right)'\left(x\right)=e^{\sqrt{x}}\cdot\frac{\sin\left(\frac1{\sqrt{x}}\right)+\sqrt{x}^2\cos\left(\frac1{\sqrt{x}}\right)}{\sqrt{x}^2}\cdot\frac1{2\sqrt{x}}=e^{\sqrt{x}}\frac{\sin\left(\frac1{\sqrt{x}}\right)+x\cos\left(\frac1{\sqrt{x}}\right)}{2x^{3/2}}$

    現取 $\displaystyle x=\frac{16}{\pi^2}$,那麼有

    $\displaystyle\begin{aligned}f'\left[f^{-1}\left(\frac{16}{\pi^2}\right)\right]&=\frac1{\left(f^{-1}\right)'\left(16/\pi^2\right)}=\frac{\displaystyle2\left(\frac{16}{\pi^2}\right)^{3/2}}{\displaystyle e^{\sqrt{16/\pi^2}}\left(\sin\left(\frac1{\sqrt{16/\pi^2}}\right)+\frac{16}{\pi^2}\cos\left(\frac1{\sqrt{16/\pi^2}}\right)\right)}\\&=\frac{\displaystyle\frac{128}{\pi^3}}{\displaystyle e^{4/\pi}\left(\sin\frac\pi4+\frac{16}{\pi^2}\cos\frac\pi4\right)}=\frac{128\sqrt2}{e^{4/\pi}\pi\left(\pi^2+16\right)}\end{aligned}$


  15. ($10\%$)
    Calculate $\displaystyle\int_0^{\infty}e^{-\frac12x^2}x\sin\left(2x\right)dx=$?
    [Hint]: (1) $\displaystyle\int_{-\infty}^{\infty}e^{-x^2}dx=\sqrt{\pi}$; (2) Let $\displaystyle F\left(\xi\right)=\int_0^{\infty}e^{-\frac12x^2}\cos\left(\xi x\right)dx$ and consider $F'\left(\xi\right)$.
  16. 訣竅按題目所給定的提示組織使用,特別是關於第二點求導後使用分部積分法獲得微分方程並求解,而第一點提示則可用於初值條件的確定。
    解法按題意的提示求導有

    $\displaystyle F'\left(\xi\right)=\frac{d}{d\xi}\int_0^{\infty}e^{-\frac12x^2}\cos\left(\xi x\right)dx=-\int_0^{\infty}e^{-\frac12x^2}x\sin\left(\xi x\right)dx$

    接著運用分部積分法改寫上式可得

    $\displaystyle-\int_0^{\infty}e^{-\frac12x^2}x\sin\left(\xi x\right)dx=\int_0^{\infty}\sin\left(\xi x\right)de^{-\frac12x^2}=e^{-\frac12x^2}\sin\left(\xi x\right)\Big|_0^{\infty}-\xi\int_0^{\infty}e^{-\frac12x^2}\cos\left(\xi x\right)dx=-\xi F\left(\xi\right)$

    至此有 $F'\left(\xi\right)=-\xi F\left(\xi\right)$。兩邊同乘以 $e^{\xi^2/2}$ 可知

    $\displaystyle\frac{d}{d\xi}\left(e^{\xi^2/2}F\left(\xi\right)\right)=0$

    故 $\displaystyle e^{\xi^2/2}F\left(\xi\right)=F\left(0\right)$。另一方面 $\displaystyle F\left(0\right)=\int_0^{\infty}e^{-\frac12x^2}dx$ 可令變數便換 $\displaystyle u=\frac{x}{\sqrt2}$,如此有

    $\displaystyle F\left(0\right)=\int_0^{\infty}e^{-u^2}\cdot\sqrt2du=\frac{\sqrt2}2\int_{-\infty}^{\infty}e^{-u^2}du=\frac{\sqrt{2\pi}}2$

    故得

    $\displaystyle F\left(\xi\right)=\frac{\sqrt{2\pi}}2e^{-\xi^2/2}$

    而所求便為

    $\displaystyle\int_0^{\infty}e^{-\frac12x^2}x\sin\left(2x\right)dx=-F'\left(2\right)=\frac{\sqrt{2\pi}}2\cdot-\xi e^{-\xi^2/2}\Big|_{\xi=2}=-\sqrt{2\pi}e^{-2}$


  17. ($10\%$)
    Let $\displaystyle S_n=\frac1{\sqrt{n}}\left(1+\frac1{\sqrt2}+\frac1{\sqrt3}+\cdots+\frac1{\sqrt{n}}\right)$. Then find $\displaystyle\lim_{n\to\infty}S_n=$?
  18. 訣竅將其視為黎曼和,故其極限之值可由積分計算之。
    解法首先可將 $S_n$ 表達如下

    $\displaystyle S_n=\frac1{\sqrt{n}}\left(1+\frac1{\sqrt2}+\frac1{\sqrt3}+\cdots+\frac1{\sqrt{n}}\right)=\frac1n\left(\frac1{\sqrt{1/n}}+\cdots+\frac1{\sqrt{n/n}}\right)$

    故可視之為 $\displaystyle f=\frac1{\sqrt{x}}$ 在 $\left(0,1\right]$ 上作 $n$ 等分後的和,故其極限逼近於瑕積分 $\displaystyle\int_0^1\frac{dx}{\sqrt{x}}=2\sqrt{x}\Big|_0^1=2$。

    【註】 事實上本題直接將黎曼和取極限得積分是有瑕疵的,因為該積分實際上為瑕積分並非定積分!藉由積分審歛法的思維,我們可以注意到這樣的不等式

    $\displaystyle\frac1n\left(\frac1{\sqrt{2/n}}+\cdots+\frac1{\sqrt{n/n}}\right)<\int_{\frac1n}^1\frac{dx}{\sqrt{x}}<\frac1n\left(\frac1{\sqrt{1/n}}+\cdots+\frac1{\sqrt{\left(n-1\right)/n}}\right)$

    因此有

    $\displaystyle2-\frac2{\sqrt{n}}+\frac1n<S_n<\frac1{\sqrt{n}}+\int_{\frac1n}^1\frac{dx}{\sqrt{x}}=2-\frac1{\sqrt{n}}$

    由夾擠定理可知 $\displaystyle\lim_{n\to\infty}S_n=2$。


  19. ($10\%$)
    Consider the plot of the function, $\displaystyle f\left(x\right)=ax^4+bx^3+cx^2+dx+e$, as follows. Please determine the signs of $a,b,c,d,e$.
  20. 訣竅仔細推敲函數的行為可以確認各係數的符號,其中利用到單調性與凹向性等技術求出低次項的係數;而對於高次項係數則藉由整體開口與根與係數關係求解。
    解法

    首先由函數的開口向上,可以確認 $a>0$。而由 $y=f\left(x\right)$ 與 $y$ 軸的負向相交則知 $e<0$。

    由於圖形 $y=f\left(x\right)$ 在與 $y$ 軸相交處的切線斜率為正,故 $d=f'\left(0\right)>0$。再者此處的凹性朝上,故 $2c=f''\left(0\right)>0$。

    最後,由於 $f'$ 為三次多項式,故至多有三個根。由圖形中可容易看出有三處局部極值的位置便為 $f'\left(x\right)=0$ 的根(兩正一負)。又留意到此時 $f'\left(x\right)=4ax^3+3bx^2+2cx+d$,故按根與係數關係有三根和為 $\displaystyle-\frac{3b}{4a}>0$,但因 $a>0$,故 $b<0$。

    結論:$a$、$c$、$d$ 為正數,$b$、$e$ 為負數。

  21. ($10\%$)
    Suppose that the distance between two places $A$ and $B$ is $39$ kilometers, and the distance of $B$ to the road $\overline{AE}$ is $15$ kilometers (see figure below). Now we want to construct a straight railway $\overline{BC}$ from $B$ to a point $C$ on the road $\overline{AE}$ in order to transport goods from $A$ to $B$. Assume that the cost of transportation per kilometer on the railway is twice as much as the cost on the road. Please determine the optimal distance between $A$ and $C$, which realizes the minimal cost!
  22. 訣竅按照題目的要求進行適當的假設列式,隨後使用微分求其極值。
    解法

    設 $B$ 到 $\overline{AE}$ 最近的點為 $D$,那麼由畢氏定理可知 $\overline{AD}=\sqrt{\overline{AB}^2-\overline{BD}^2}=\sqrt{39^2-15^2}=36$ 公里。設 $\overline{AC}=x$ 公里,那麼 $\overline{CD}=36-x$ 公里,從而有 $\overline{BC}=\sqrt{15^2+\left(36-x\right)^2}$ 公里。

    若在一般道路的運輸費用為每公里 $C$ 元,而在鐵路上則為每公里 $2C$ 元,故總成本可表達為 $x$ 的函數如下

    $T\left(x\right)=Cx+2C\sqrt{225+\left(36-x\right)^2},\qquad\left(0\leq x\leq36\right)$

    為了求出極小值,我們解 $T'\left(x\right)=0$,即

    $\displaystyle C-2C\cdot\frac{36-x}{\sqrt{225+\left(36-x\right)^2}}=0$

    故有 $\sqrt{225+\left(36-x\right)^2}=2\left(36-x\right)$,即 $225+\left(36-x\right)^2=4\left(36-x\right)^2$,再整理便為 $\left(36-x\right)^2=75$,從而 $x=36\pm5\sqrt3$(正不合)。現檢查端點 $x=0$ 與 $x=36$ 與內點 $x=36-5\sqrt3$ 如下

    $T\left(0\right)=78C,\quad T\left(36\right)=66C,\quad T\left(36-5\sqrt3\right)=\left(36+15\sqrt3\right)C$

    可以確認當 $\overline{AC}=36-5\sqrt3$ 公里時建設鐵路會有最低的成本。

沒有留言:

張貼留言