- Express $d^2y/dx^2$ in terms of $x$ and $y$ for $4\tan y=x^3$. (10%)
- Sketch the graph of $\displaystyle f\left(x\right)=\frac{1+\sqrt{x}}{1-\sqrt{x}}$, and indicate the extrema, inflection points, concavity, and asymptotes (if any). (20%)
- Evaluate the definite integral $\displaystyle\int_0^8\frac{dx}{1+\sqrt[3]{x}}$. (10%)
- 當 $x=0$ 時有 $u=1$;
- 當 $x=8$ 時有 $u=3$;
- 整理有 $x=\left(u-1\right)^3$,求導有 $dx=3(u-1)^2du$。
- Find the area and the length of the cardioid $r=1-\cos\theta$. (10%)
- Maximize $x^2+y^2$ on the curve $x^4+7x^2y^2+y^4=1$. (10%)
- 假若 $x^2-y^2=0$,則第三式可寫為 $9x^4=1$,即得 $\displaystyle x=\pm\frac{\sqrt3}3$,而 $\displaystyle y=\pm\frac{\sqrt3}3$,故有四點座標為 $\displaystyle\pm\left(\frac{\sqrt3}3,\frac{\sqrt3}3\right)$ 與 $\displaystyle\pm\left(\frac{\sqrt3}3,-\frac{\sqrt3}3\right)$。
- 假若 $2\lambda\left(x^2+y^2\right)=-1$,則 $\lambda\neq0$,故有 $\displaystyle x^2+y^2=-\frac1{2\lambda}$。又第一式乘以 $x$ 加上第二式乘以 $y$ 並搭配第三式便有 $\displaystyle-\frac1{\lambda}+7\lambda=0$,故得 $\displaystyle\lambda=\pm\frac{\sqrt7}7$。
- Determine whether the series $\displaystyle\sum_{k=1}^{\infty}\ln\left(\frac{k}{k+1}\right)$ converges or diverges. (10%)
- Find the Taylor polynomial $P_5\left(x\right)$, its remainder, and the interval of convergence for the given function $f\left(x\right)=e^x\sin x$. (20%)
- Evaluate the integral $\displaystyle\int_0^3\int_0^{\sqrt{9-y^2}}\int_0^{\sqrt{9-x^2-y^2}}\frac1{\sqrt{x^2+y^2}}dzdxdy$. (10%)
訣竅
運用隱函數微分求解即可。解法
對給定的方程式同取求導可得$\displaystyle4\sec^2y\cdot\frac{dy}{dx}=3x^2$
即有 $\displaystyle\frac{dy}{dx}=\frac{3x^2\cos^2y}4$。再求導有$\displaystyle\frac{d^2y}{dx^2}=\frac{3x\cos^2y}2+\frac{3x^2\cos y}2\frac{dy}{dx}=\frac{12x\cos^2y+9x^4\cos^3y}8$
訣竅
透過計算極限、一階與二階導函數等尋求極值、反曲點、遞增遞減區間、凹凸區間以及漸近線等繪圖資訊。解法
首先可將 $f$ 改寫為 $f\left(x\right)=-1+2\left(1-\sqrt{x}\right)^{-1}$。容易注意到 $\displaystyle\lim_{x\to\infty}f\left(x\right)=-1$,故水平漸近線為 $y=-1$,而 $\displaystyle\lim_{x\to1^{\pm}}f\left(x\right)=\mp\infty$,故 $x=1$ 為鉛直漸近線。
求導可知 $f'\left(x\right)=x^{-1/2}\left(1-\sqrt{x}\right)^{-2}$,容易發現當 $x\in\left(0,1\right)\cup\left(1,\infty\right)$ 時恆有 $f'\left(x\right)>0$。而二階導函數為 $\displaystyle f''\left(x\right)=\frac{3\sqrt{x}-1}{2x^{3/2}\left(1-\sqrt{x}\right)^3}$,故 $f''\left(x\right)=0$ 可解得 $\displaystyle x=\frac19$。又容易發現在 $\displaystyle\left(0,\frac19\right)\cup\left(1,\infty\right)$ 有 $f''\left(x\right)<0$,而在 $\displaystyle\left(\frac19,1\right)$ 有 $f''\left(x\right)>0$,因此在 $\displaystyle x=\frac19$ 為反曲點。
將以上資訊繪圖如下可得訣竅
運用變數代換法求解。解法
令 $u=1+\sqrt[3]{x}$,那麼$\displaystyle\int_0^8\frac{dx}{1+\sqrt[3]{x}}=\int_1^3\frac{3(u-1)^2du}u=3\int_1^3\left(u-2+\frac1u\right)du=\left.3\left(\frac{u^2}2-2u+\ln u\right)\right|_1^3=3\ln3$
訣竅
運用極座標下的面積與弧長公式求解即可。解法
使用極座標下的面積公式可知$\displaystyle\begin{aligned}A&=\frac12\int_0^{2\pi}\left(1-\cos\theta\right)^2d\theta=\frac12\int_0^{2\pi}\left(1-2\cos\theta+\cos^2\theta\right)d\theta\\&=\frac14\int_0^{2\pi}\left(3-4\cos\theta+\cos2\theta\right)d\theta=\left.\frac14\left(3\theta-4\sin\theta+\frac{\sin2\theta}2\right)\right|_0^{2\pi}=\frac{3\pi}2\end{aligned}$
使用極座標下的曲線弧長公式可知$\displaystyle s=\int_0^{2\pi}\sqrt{\left(1-\cos\theta\right)^2+\left(\sin\theta\right)^2}d\theta=2\int_0^{2\pi}\sqrt{\frac{1+\cos\theta}2}d\theta=2\int_0^{2\pi}\left|\cos\frac\theta2\right|d\theta=4\int_0^{\pi}\cos\frac\theta2d\theta=\left.8\sin\frac\theta2\right|_0^{\pi}=8$
訣竅
運用拉格朗日乘子法求條件極值。解法
設定拉格朗日乘子函數如下$F\left(x,y,\lambda\right)=x^2+y^2+\lambda\left(x^4+7x^2y^2+y^4-1\right)$
據此解聯立方程組$\left\{\begin{aligned}&F_x\left(x,y,\lambda\right)=2x+\lambda\left(4x^3+14xy^2\right)=0\\&F_y\left(x,y,\lambda\right)=2y+\lambda\left(14x^2y+4y^3\right)=0\\&F_{\lambda}\left(x,y,\lambda\right)=x^4+7x^2y^2+y^4-1=0\end{aligned}\right.$
第一式乘以 $x$ 後減去第二式乘以 $y$ 可知 $x^2-y^2+\lambda\left(2x^4-2y^4\right)=0$,或因式分解為 $\left(x^2-y^2\right)\left[1+2\lambda\left(x^2+y^2\right)\right]=0$。訣竅
運用分項對消求其部分和後計算極限。解法
按照無窮級數的定義寫為部分和的極限計算如下$\displaystyle\sum_{k=1}^{\infty}\ln\left(\frac{k}{k+1}\right)=\lim_{n\to\infty}\sum_{k=1}^n\left[\ln k-\ln\left(k+1\right)\right]=\lim_{n\to\infty}\left(\ln1-\ln\left(n+1\right)\right)=-\infty$
故給定的級數發散。訣竅
直接應用泰勒定理並觀察其規律計算即可。解法
直接求導可知$f'\left(x\right)=e^x\left(\sin x+\cos x\right)$, $f''\left(x\right)=2e^x\cos x$, $f'''\left(x\right)=2e^x\left(\cos x-\sin x\right)$,
$f^{\left(4\right)}\left(x\right)=-4e^x\sin x$, $f^{\left(5\right)}\left(x\right)=-4e^x\left(\sin x+\cos x\right)$, $f^{\left(6\right)}\left(x\right)=-8e^x\cos x$.
如此所求的泰勒多項式為$\displaystyle P_5\left(x\right)=\sum_{n=0}^5\frac{f^{\left(n\right)}\left(0\right)}{n!}x^n=x+x^2+\frac{x^3}3-\frac{x^5}{30}$
而其餘項為$\displaystyle R_5\left(x\right)=f\left(x\right)-P_5\left(x\right)=\frac{f^{\left(6\right)}\left(\xi\right)}{6!}x^6=-\frac{e^\xi\cos\xi}{90}x^6$
又 $e^x$ 與 $\cos x$ 的收斂區間皆為 $\left(-\infty,\infty\right)$,故兩者乘積的收斂區間亦為 $\left(-\infty,\infty\right)$。訣竅
運用球面座標變換即可處理。解法
令 $\left\{\begin{aligned}&x=\rho\cos\theta\sin\phi,\\&y=\rho\sin\theta\sin\phi,\\&z=\rho\cos\phi.\end{aligned}\right.$,那麼由積分區域可知變數範圍為 $\left\{\begin{aligned}&0\leq\rho\leq3\\&0\leq\theta\leq\frac\pi2\\&0\leq\phi\leq\frac\pi2\end{aligned}\right.$。如此所求之三重積分可改寫並計算如下$\displaystyle\begin{aligned}\int_0^3\int_0^{\sqrt{9-y^2}}\int_0^{\sqrt{9-x^2-y^2}}\frac1{\sqrt{x^2+y^2}}dzdxdy&=\int_0^{\frac\pi2}\int_0^{\frac\pi2}\int_0^3\frac1{\rho}\cdot\rho^2\sin\phi d\rho d\phi d\theta\\&=\left(\int_0^{\frac\pi2}d\theta\right)\left(\int_0^{\frac\pi2}\sin\phi d\phi\right)\left(\int_0^3\rho d\rho\right)=\frac\pi2\cdot1\cdot\frac92=\frac{9\pi}4\end{aligned}$
沒有留言:
張貼留言