- Sketch the graph of $f\left(x\right)=x^{1/3}\left(x+4\right)$, and indicate the extrema, inflection points, concavity, and asymptotes (if any). (20%)
- Find $\displaystyle\frac{d}{dx}\left[x^{\sin x}\right]$. (10%)
- Find $\displaystyle\int\sin^{-1}xdx$. (10%)
- Find the length of the curve $y=x^{3/2}+2$ from $x=0$ to $x=5/9$. (10%)
- Determine whether the integral $\displaystyle\int_e^{\infty}\frac{dx}{\sqrt{x+1}\ln x}$ converges. (10%)
- Find the Taylor series expansion of $f\left(x\right)=\sqrt{x+1}$ in powers of $x$ and give the radius of convergence. (10%)
- Maximize $3x-2y+z$ on the sphere $x^2+y^2+z^2=1$. (10%)
- Evaluate $\displaystyle\iint\left(x-y\right)\cos\left[\pi\left(x-y\right)\right]dxdy$ in the parallelogram bounded by $x+y=0$, $x+y=1$, $x-y=0$, $x-y=2$. (10%)
- Calculate the total flux of $\vec{v}=2x\vec{i}+xz\vec{j}+z^2\vec{k}$ out of the solid bounded by the paraboloid $z=9-x^2-y^2$ and the $xy$-plane. (10%)
訣竅
運用一階導函數求極值、二階導函數求反曲點與凹向性,透過計算極限求漸近線。解法
容易發現 $\displaystyle\lim_{x\to\pm\infty}f\left(x\right)=\infty$,且對任何實數 $a\in\mathbb{R}$ 有 $\displaystyle\lim_{x\to a}f\left(x\right)=f\left(a\right)$,故 $y=f\left(x\right)$ 無水平與鉛直漸近線。又 $\displaystyle\lim_{x\to\pm\infty}\frac{f\left(x\right)}x=\pm\infty$,故也無斜漸近線。
現對 $x\neq0$ 處求導可得 $\displaystyle f'\left(x\right)=\frac{4x^{-2/3}\left(x+1\right)}3$,且容易發現 $f$ 在 $x=0$ 處不可導。先求遞增區域,即解不等式 $f'\left(x\right)>0$,可解得 $\left(-1,0\right)\cup\left(0,\infty\right)$,故 $f$ 在 $\left(-1,\infty\right)$ 上遞增,反之在 $\left(-\infty,-1\right)$ 上遞減,從而在 $x=-1$ 處達到極小值,同時恰為絕對極小值,此值為 $f\left(-1\right)=-3$,而函數無極大值與絕對極大值。
又計算二階導函數可知 $\displaystyle f''\left(x\right)=\frac{4x^{-5/3}\left(x-2\right)}9$,其中 $x\neq0$。為了找出凹口向上的區域,我們應解不等式 $f''\left(x\right)>0$,即得 $\left(-\infty,0\right)\cup\left(2,\infty\right)$,而凹口向下的區域即為 $\left(0,2\right)$。因此 $\left(0,f\left(0\right)\right)=\left(0,0\right)$ 與 $\left(2,f\left(2\right)\right)=\left(2,6\sqrt[3]2\right)$ 為反曲點。
將以上資訊結合可繪圖如下訣竅
運用換底後使用基本導函數與連鎖律等微分公式求解即可。解法
換底後使用連鎖律等公式直接計算如下$\displaystyle\frac{d}{dx}\left[x^{\sin x}\right]=\frac{d}{dx}\left(e^{\left(\ln x\right)\sin x}\right)=e^{\left(\ln x\right)\sin x}\cdot\left(\frac{\sin x}x+\left(\ln x\right)\cos x\right)=x^{\sin x}\left(\frac{\sin x}x+\left(\ln x\right)\cos x\right)$
訣竅
運用分部積分法結合變數代換的概念求解。解法
直接使用分部積分法計算可知$\displaystyle\int\sin^{-1}xdx=x\sin^{-1}x-\int\frac{x}{\sqrt{1-x^2}}dx=x\sin^{-1}x-\frac12\int\left(1-x^2\right)^{-1/2}dx^2=x\sin^{-1}x+\left(1-x^2\right)^{1/2}+C$
訣竅
使用曲線弧長公式計算即可。解法
由曲線弧長公式列式並計算如下$\displaystyle\begin{aligned}s&=\int_0^{5/9}\sqrt{1+y'^2}dx=\int_0^{5/9}\sqrt{1+\left(\frac32x^{1/2}\right)^2}=\frac12\int_0^{5/9}\sqrt{4+9x}dx\\&=\left.\frac12\cdot\frac23\left(4+9x\right)^{3/2}\cdot\frac19\right|_0^{5/9}=\frac1{27}\left(27-8\right)=\frac{19}{27}\end{aligned}$
訣竅
將對數函數轉換為容易比較之對象後使用比較審歛法即可。解法一
設 $f\left(x\right)=2\left(x+1\right)^{1/2}-\ln x$,那麼求導可知$\displaystyle f'\left(x\right)=\left(x+1\right)^{-1/2}-\frac1x=\frac{x-\sqrt{1+x}}{x\sqrt{x+1}}$
容易發現當 $\displaystyle x>\frac{1+\sqrt5}2$ 時 $f'\left(x\right)>0$,故當 $x\in\left[e,\infty\right)$ 時有 $f$ 嚴格遞增且 $f\left(e\right)=2\sqrt{e+1}-1>0$,如此便有 $2\sqrt{x+1}>\ln x$,從而有 $\displaystyle\frac1{\sqrt{x+1}\ln x}>\frac1{2\left(x+1\right)}$。由於被積分函數恆正且瑕積分 $\displaystyle\int_e^{\infty}\frac{dx}{2\left(x+1\right)}=\infty$ 發散,故由比較審歛法可知給定之瑕積分亦發散。解法二
承解法一,容易發現當 $x\geq e$ 時有 $\sqrt{x+1}<x$,從而有 $\displaystyle\frac1{\sqrt{x+1}\ln x}>\frac1{x\ln x}$,而瑕積分 $\displaystyle\int_e^{\infty}\frac{dx}{x\ln x}=\ln\left(\ln x\right)\Big|_e^{\infty}=\infty$ 發散,且給定之函數非負,因此由比較審歛法可知給定的瑕積分發散。訣竅
運用廣義二項式定理求泰勒展開式。解法
由廣義二項式定理可知$\displaystyle f\left(x\right)=\sqrt{x+1}=\sum_{k=0}^{\infty}{1/2\choose k}x^k=1+\frac{x}2+\sum_{k=2}^{\infty}\frac{\frac12\cdot\left(-\frac12\right)\cdots\left(-\frac{2k-3}2\right)}{k!}x^k=1+\frac{x}2+\sum_{k=2}^{\infty}\frac{\left(-1\right)^{k-1}\left(2k-2\right)!}{2^{2k-1}\left(k-1\right)!k!}x^k$
由比值審歛法可知$\displaystyle R=\lim_{k\to\infty}\left|\frac{\left(-1\right)^{k-1}\left(2k-2\right)!}{2^{2k-1}\left(k-1\right)!k!}\div\frac{\left(-1\right)^k\left(2k\right)!}{2^{2k+1}k!\left(k+1\right)!}\right|=\lim_{k\to\infty}\frac{2k+2}{2k-1}=1$
故收斂半徑為 $1$。訣竅
運用初等不等式即可獲得極值;亦可運用拉格朗日乘子法求解。解法一
由柯西不等式可知$14=\left(x^2+y^2+z^2\right)\left[3^2+\left(-2\right)^2+1^2\right]\geq\left(3x-2y+z\right)^2$
故可知 $-\sqrt{14}\leq3x-2y+z\leq\sqrt{14}$,因此最大值為 $\sqrt{14}$,而等號成立條件為 $\displaystyle\left(x,y,z\right)=\left(\frac3{\sqrt{14}},-\frac2{\sqrt{14}},\frac1{\sqrt{14}}\right)$。解法二
設定拉格朗日乘子函數如下$F\left(x,y,z,\lambda\right)=3x-2y+z+\lambda\left(x^2+y^2+z^2-1\right)$
據此解聯立方程組$\left\{\begin{aligned}&F_x\left(x,y,z,\lambda\right)=3+2\lambda x=0,\\&F_y\left(x,y,z,\lambda\right)=-2+2\lambda y=0,\\&F_z\left(x,y,z,\lambda\right)=1+2\lambda z=0,\\&F_{\lambda}\left(x,y,z,\lambda\right)=x^2+y^2+z^2-1=0.\end{aligned}\right.$
容易知道 $\lambda\neq0$,故 $\displaystyle x=-\frac3{2\lambda}$、$y=\frac1{\lambda}$、$\displaystyle z=-\frac1{2\lambda}$,代入第四式可知 $\displaystyle\frac9{4\lambda^2}+\frac1{\lambda^2}+\frac1{4\lambda^2}=1$,故 $\displaystyle\lambda^2=\frac{14}4$,$\displaystyle\lambda=\pm\frac{\sqrt7}2$。如此可得 $\displaystyle\left(x,y,z\right)=\pm\left(\frac3{\sqrt{14}},-\frac2{\sqrt{14}},\frac1{\sqrt{14}}\right)$,代入便有最大最小值分別為 $\pm\sqrt{14}$。訣竅
從邊界條件與被積分函數可推知應使用變數代換改寫重積分,其中應注意 Jacobian 行列式值的計算。解法
令 $\left\{\begin{aligned}&u=x-y\\&v=x+y\end{aligned}\right.$,那麼積分區域可表達為 $\left\{\begin{aligned}&0\leq u\leq2\\&0\leq v\leq1\end{aligned}\right.$,那麼 Jacobian 行列式為$\displaystyle\Big|\left|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\right|\Big|=\Big|\left|\frac{\partial\left(u,v\right)}{\partial\left(x,y\right)}\right|\Big|^{-1}=\Big|\left|\begin{matrix}\displaystyle\frac{\partial u}{\partial x}&\displaystyle\frac{\partial u}{\partial y}\\\displaystyle\frac{\partial v}{\partial x}&\displaystyle\frac{\partial v}{\partial y}\end{matrix}\right|\Big|^{-1}=\Big|\left|\begin{matrix}1&-1\\1&1\end{matrix}\right|\Big|^{-1}=\frac12$
如此所求的重積分為$\displaystyle\int_0^1\int_0^2v\cos\left(\pi v\right)dudv=2\int_0^1v\cos\left(\pi v\right)dv=\frac2\pi\left[v\sin\left(\pi v\right)\Big|_0^1-\int_0^1\sin\left(\pi v\right)dv\right]=\left.\frac2{\pi^2}\cos\left(\pi v\right)\right|_0^1=-\frac4{\pi^2}$
訣竅
利用高斯散度定理計算即可。解法
設 $D=\left\{\left(x,y,z\right)\in\mathbb{R}^3:0\leq z\leq9-x^2-y^2\right\}$,如此由高斯散度定理能知$\displaystyle\text{flux}=\iint_{\partial D}\vec{v}\cdot\vec{n}dS=\iiint_D\text{div}\,\vec{v}dV=\iiint_D\left(2+2z\right)dV$
那麼由柱面變換 $\left\{\begin{aligned}&x=r\cos\theta\\&y=r\sin\theta\\&z=z\end{aligned}\right.$,而積分範圍為 $\left\{\begin{aligned}&0\leq r\leq3\\&0\leq\theta\leq2\pi\\&0\leq z\leq9-r^2\end{aligned}\right.$,且有 $dV=rdzdrd\theta$,所求可立即改寫並計算如下$\displaystyle\begin{aligned}\text{flux}&=\int_0^{2\pi}\int_0^3\int_0^{9-r^2}\left(2+2z\right)rdzdrd\theta=2\pi\int_0^3\left(2rz+rz^2\right)\Big|_0^{9-r^2}dr\\&=2\pi\int_0^3\left(99r-20r^3+r^5\right)dr=\left.\pi\left(99r^2-10r^4+\frac{r^6}3\right)\right|_0^3=324\pi\end{aligned}$
沒有留言:
張貼留言