For Questions 1 to 10, select a correct answer for each question and mark the letter (a), (b), (c), or (d) on your answer card.
- (5%) For speeds between 40 and 65 kilometers per hour, a truck gets 480/x kilometers for per liter of diesel gasoline when driven at a constant speed of x kilometers per hour. Diesel gasoline costs $2.23 per liter, and the driver is paid $15.10 per hour. What is the most economical constant speed between 40 and 65 kilometers per hour at which to drive the truck?
- 52.5 kilometers per hour
- 57 kilometers per hour
- 65 kilometers per hour
- None of the above
- (5%) What is the value of ∫21x3ln(√x)dx?
- 0.713
- 0.865
- 0.918
- None of the above
- (5%) Which can be the solution form of A(t) if
A′(t)=A2(t)+A(t)−1, and A(0)=0.
- A(t)=a+bect+d
- A(t)=exp(a+bect)+d
- A(t)=(a+bect)−1+d
- None of the above
- (5%) Consider a cash-or-nothing call option which pays the option holder an amount K at the maturity T only if the asset price at T is larger than K. The pricing formula for this option is as follows.
c=Ke−rTN(d),
whered=ln(SK)+(r−σ22)Tσ√T,
and S is the current asset price, r is a constant risk-free interest rate, σ is the volatility of the asset price, and N(⋅) is the cumulative distribution function of the standard normal distribution defined asN(d)=∫d−∞n(x)dx=∫d−∞1√2πe−x22dx.
Derive the Delta (i.e., ∂c∂S) of this option.- 1√2πσ√Te−(d+σ√T)22
- K√2πSσ√Te−d22
- 0
- None of the above
- (5%) For the pricing formula of the cash-or-nothing call option in Question 4, derive the vega (i.e., ∂c∂σ) of this option.
- K√2πe−rT+d22(√T+dσ)
- K√2πe−rT+d22(√T−dσ)
- −K√2πe−rT−d22(√T+dσ)
- None of the above
- (5%) What is the value of limx→0(11−cosx−2x2)?
- −∞
- 1/3
- 1/6
- ∞
- (5%) Determine whether the following statement is true or false.
“Suppose an is positive for all n. If ∞∑n=1an converges then ∞∑n=1√anan+1 also converges.”
- False
- True
- Uncertain (need more information)
- None of the above
- (5%) A community is laid out as a rectangular grid in relation to two main streets that intersect at the city center. Each point in the community has coordinates (x,y) in this grid, for −10≤x≤10, −8≤y≤8 with x and y measured in kilometers. Suppose the value of the land located at the point (x,y) is V thousand dollars, where
V(x,y)=(250+17x)e−0.01x−0.05y.
Estimate the value of the block of land occupying the rectangular region 1≤x≤3, 0≤y≤2.- 759 thousand dollars
- 859 thousand dollars
- 959 thousand dollars
- None of the above
- If a positive variable λ follows a gamma distribution, i.e., λ∼Gamma(α,β), where α and β are positive real numbers. Consequently, the probability density function for λ is as follows.
f(λ)=βα1Γ(α)λα−1e−βλ,
where Γ(Z) is the gamma function and defined asΓ(Z)=∫∞0e−ttZ−1dt,
if Z is a complex number with a positive real part. What is the var(λ) given α=1 and β=2? (5%)- 1/4
- 1/2
- 1
- None of the above
- (5%) The death rate and birth rate of many animal and plant species fluctuate periodically with the seasons. The population P(t) of such a species at time t changes at a rate that may be modeled by a differential equation of the form
dPdt=(1+cos2πt)P.
Given the initial population P(0) be 1000, what is the population P(1.5)?- 1482
- 2482
- 3482
- None of the above
訣竅
依據題意列出成本函數,由此求導計算出最小值發生的速度。解法
設總距離為 L,而當時速為 x 公里時,其成本為C(x)=2.23⋅Lx480+15.10⋅Lx=L(2.23x480+15.1x)
為了找出 C 的最小值,我們應解方程式 C′(x)=0,即C′(x)=L(2.23480−15.1x2)=0
如此有 x2=1510⋅480223≈3250,因此 x≈57。容易注意到 C″(x)=30.2Lx3>0,故 C 在 x≈57 時達到絕對最小值,故選(b)。訣竅
運用分部積分法求解即可。解法
運用分部積分法可知∫21x3ln(√x)dx=18∫21lnxdx4=18x4lnx|21−18∫21x3dx=2ln2−x432|21=2ln2−1532≈2⋅0.69314718056−0.46875=0.91754436112
故選(c)。訣竅
使用分離變量法積分求解即可。解法
移項整理有1√5(1A+1−√52−1A+1+√52)dA=dA(A+12)2−(√52)2=dAA2+A−1=dt
同取積分有1√5ln|2A+1−√52A+1+√5|=t+C
由初值條件 C=1√5ln(√5−1√5+1)=2√5ln√5−12。如此整理可解得A(t)=−1+√52+4√5[4−(√5−1)2e√5t]−1=[1√5−(√5−1)24√5e√5t]−1−1+√52
此與(c)之形式相同,其中 a=1√5、b=−(√5−1)24√5、c=√5、d=−1+√52。訣竅
使用連鎖律求導即可。解法
由連鎖律可知∂c∂S=Ke−rT∂∂SN(d)=Ke−rT⋅n(d)⋅∂d∂S=Ke−rTn(d)⋅1σS√T=Ke−rT√2πSσ√Te−d22
前三個選項皆與之不同,故選(d)。訣竅
運用連鎖律求導即可。解法
直接求導有∂c∂σ=Ke−rT∂∂σN(d)=Ke−rT⋅n(d)⋅∂d∂σ=Ke−rTn(d)⋅(−√T−ln(SK)+(r−σ22)Tσ2√T)=Ke−rT⋅1√2πe−d22(−√T−dσ)=−K√2πe−rT−d22(√T+dσ)
故選(c)。訣竅
通分後使用羅必達法則即可。解法
通分後使用羅必達法則可得limx→0(11−cosx−2x2)=limx→0x2−2+2cosxx2−x2cosx=limx→02x−2sinx2x−2xcosx+x2sinx=limx→02−2cosx2−2cosx+4xsinx+x2cosx=limx→02sinx6sinx+6xcosx−x2sinx=limx→02cosx12cosx−8xsinx−x2cosx=16
故選(c)。訣竅
有技巧地使用柯西不等式即可獲得證明。解法
由柯西不等式可知(k∑n=1√anan+1)2≤k∑n=1an⋅k∑n=1an+1≤∞∑n=1an⋅∞∑n=1an+1<∞
故 k∑n=1√anan+1 有均勻上界,因此該級數隨 k 遞增有上界,故其極限存在,因此 ∞∑n=1√anan+1<∞。因此命題成立,選(b)。【註】 原題有些許錯字,原敘述如下:(5%) Determine whether the following statement is true or false.
“Suppose an is positive for all n. If ∞∑i=1an converges then ∞∑i=1√anan+1 also converges.”
其標號於本題中無意義。訣竅
按其意義作重積分計算即可。解法
直接作重積分Value=∫31∫20V(x,y)dxdy=(∫20e−0.05ydy)[∫31(250+17x)e−0.01xdx]=−20e−0.05y|20⋅−100∫31(250+17x)de−0.01x=−2000(1−e−0.1)[(250+17x)e−0.01x|31−17∫31e−0.01xdx]=−2000(1−e−0.1)(301e−0.03−267e−0.01+1700e−0.01x|31)=−2000(1−e−0.1)(2001e−0.03−1967e−0.01)≈1059
故選(d)。訣竅
回憶變異數與期望值等定義,並使用分部積分法計算其值。解法
當 α=1 且 β=2 時,其機率密度函數為f(λ)=2e−2λ
那麼分別使用分部積分法計算有E[λ]=∫∞0λf(λ)dλ=2∫∞0λe−2λdλ=−λe−2λ|∞0+∫∞0e−2λdλ=−e−2λ2|∞0=12
以及E[λ2]=∫∞0λ2f(λ)dλ=2∫∞0λ2e−2λdλ=−λ2e−2λ|∞0+2∫∞0λe−2λdλ=12
因此變異數為var(λ)=E[λ2]−(E[λ])2=12−(12)2=14
故選(a)。訣竅
運用分離變量法解微分方程即可。解法
移項有dPP=(1+cos2πt)dt
同取不定積分可得ln(P(t))=t+sin2πt2π+C
又因 P(0)=1000,故有 C=ln1000=3ln10。因此有P(t)=1000exp(t+sin(2πt)2π)
取 t=1.5,可得P(1.5)=1000exp(1.5)≈1000⋅2.7181.5≈4481
- (10%) Find dy/dx given that y3+y2−5y−x2=−4.
- (10%) Evaluate
∫10arcsin(x)dx.
- (10%) Find the interval of convergence for ∞∑k=12kxkk.
- 當 x=−12 時級數寫為 ∞∑k=1(−1)kk,由交錯級數審歛法可知收斂;
- 當 x=12 時級數寫為 ∞∑k=11k,此時調和級數可知其發散。
- (10%) Find the surface area of the portion of the plane x+y+z=1 that lies in the first octant (where x≥0, y≥0, z≥0).
- (10\%) Suppose X is a metric space and K is a subset of X. Describe and explain the definition of K being a compact set.
訣竅
運用隱函數微分求解即可。解法
使用隱函數微分,直接對 x 求導有3y2dydx+2ydydx−5dydx−2x=0
整理可解得dydx=2x3y2+2y−5
訣竅
運用分部積分法直接計算即可。解法
使用分部積分法可知∫10arcsin(x)dx=xarcsin(x)|10−∫10x⋅1√1−x2dx=π2+√1−x2|10=π2−1
訣竅
運用比值審歛法的概念計算收斂半徑,隨後決定端點的收斂性。解法
使用比值審歛法可知R=limk→∞|akak+1|=limk→∞|2kk⋅k+12k+1|=12
故確定在 x∈(−12,12) 上收斂。現檢查端點如下訣竅
由三角形面積公式計算;亦可運用曲面積分計算之。解法一
容易注意到平面 x+y+z=1 與三軸的交點分別為 (1,0,0)、(0,1,0) 與 (0,0,1),容易注意到該三角形為邊長為 √2 的正三角形,故其面積為 √34⋅√22=√32。解法二
容易注意到平面 x+y+z=1 與三軸的交點分別為 A(1,0,0)、B(0,1,0) 與 C(0,0,1),那麼三角形面積為Area=12|→AB×→AC|=12|(−1,1,0)×(−1,0,1)|=12|(1,1,1)|=√32
解法三
設 D={(x,y)∈R2:x+y≤1,x,y≥0},而平面可寫為 z=f(x,y):=1−x−y,故曲面面積可表達為Area=∬
沒有留言:
張貼留言