Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2020年9月14日 星期一

國立臺灣大學一百零四學年度研究所碩士班入學考試試題:微積分(C)

※注意:請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。

For Questions 1 to 10, select a correct answer for each question and mark the letter (a), (b), (c), or (d) on your answer card.

  1. (5%) For speeds between 40 and 65 kilometers per hour, a truck gets 480/x kilometers for per liter of diesel gasoline when driven at a constant speed of x kilometers per hour. Diesel gasoline costs $2.23 per liter, and the driver is paid $15.10 per hour. What is the most economical constant speed between 40 and 65 kilometers per hour at which to drive the truck?
    1. 52.5 kilometers per hour
    2. 57 kilometers per hour
    3. 65 kilometers per hour
    4. None of the above
  2. 訣竅依據題意列出成本函數,由此求導計算出最小值發生的速度。
    解法設總距離為 L,而當時速為 x 公里時,其成本為

    C(x)=2.23Lx480+15.10Lx=L(2.23x480+15.1x)

    為了找出 C 的最小值,我們應解方程式 C(x)=0,即

    C(x)=L(2.2348015.1x2)=0

    如此有 x2=15104802233250,因此 x57。容易注意到 C(x)=30.2Lx3>0,故 Cx57 時達到絕對最小值,故選(b)。

  3. (5%) What is the value of 21x3ln(x)dx?
    1. 0.713
    2. 0.865
    3. 0.918
    4. None of the above
  4. 訣竅運用分部積分法求解即可。
    解法運用分部積分法可知

    21x3ln(x)dx=1821lnxdx4=18x4lnx|211821x3dx=2ln2x432|21=2ln2153220.693147180560.46875=0.91754436112

    故選(c)。

  5. (5%) Which can be the solution form of A(t) if

    A(t)=A2(t)+A(t)1, and A(0)=0.

    1. A(t)=a+bect+d
    2. A(t)=exp(a+bect)+d
    3. A(t)=(a+bect)1+d
    4. None of the above
  6. 訣竅使用分離變量法積分求解即可。
    解法移項整理有

    15(1A+1521A+1+52)dA=dA(A+12)2(52)2=dAA2+A1=dt

    同取積分有

    15ln|2A+152A+1+5|=t+C

    由初值條件 C=15ln(515+1)=25ln512。如此整理可解得

    A(t)=1+52+45[4(51)2e5t]1=[15(51)245e5t]11+52

    此與(c)之形式相同,其中 a=15b=(51)245c=5d=1+52

  7. (5%) Consider a cash-or-nothing call option which pays the option holder an amount K at the maturity T only if the asset price at T is larger than K. The pricing formula for this option is as follows.

    c=KerTN(d),

    where

    d=ln(SK)+(rσ22)TσT,

    and S is the current asset price, r is a constant risk-free interest rate, σ is the volatility of the asset price, and N() is the cumulative distribution function of the standard normal distribution defined as

    N(d)=dn(x)dx=d12πex22dx.

    Derive the Delta (i.e., cS) of this option.
    1. 12πσTe(d+σT)22
    2. K2πSσTed22
    3. 0
    4. None of the above
  8. 訣竅使用連鎖律求導即可。
    解法由連鎖律可知

    cS=KerTSN(d)=KerTn(d)dS=KerTn(d)1σST=KerT2πSσTed22

    前三個選項皆與之不同,故選(d)。

  9. (5%) For the pricing formula of the cash-or-nothing call option in Question 4, derive the vega (i.e., cσ) of this option.
    1. K2πerT+d22(T+dσ)
    2. K2πerT+d22(Tdσ)
    3. K2πerTd22(T+dσ)
    4. None of the above
  10. 訣竅運用連鎖律求導即可。
    解法直接求導有

    cσ=KerTσN(d)=KerTn(d)dσ=KerTn(d)(Tln(SK)+(rσ22)Tσ2T)=KerT12πed22(Tdσ)=K2πerTd22(T+dσ)

    故選(c)。

  11. (5%) What is the value of limx0(11cosx2x2)?
    1. 1/3
    2. 1/6
  12. 訣竅通分後使用羅必達法則即可。
    解法通分後使用羅必達法則可得

    limx0(11cosx2x2)=limx0x22+2cosxx2x2cosx=limx02x2sinx2x2xcosx+x2sinx=limx022cosx22cosx+4xsinx+x2cosx=limx02sinx6sinx+6xcosxx2sinx=limx02cosx12cosx8xsinxx2cosx=16

    故選(c)。

  13. (5%) Determine whether the following statement is true or false.

    “Suppose an is positive for all n. If n=1an converges then n=1anan+1 also converges.”

    1. False
    2. True
    3. Uncertain (need more information)
    4. None of the above
  14. 訣竅有技巧地使用柯西不等式即可獲得證明。
    解法由柯西不等式可知

    (kn=1anan+1)2kn=1ankn=1an+1n=1ann=1an+1<

    kn=1anan+1 有均勻上界,因此該級數隨 k 遞增有上界,故其極限存在,因此 n=1anan+1<。因此命題成立,選(b)。

    【註】 原題有些許錯字,原敘述如下:(5%) Determine whether the following statement is true or false.

    “Suppose an is positive for all n. If i=1an converges then i=1anan+1 also converges.”

    其標號於本題中無意義。


  15. (5%) A community is laid out as a rectangular grid in relation to two main streets that intersect at the city center. Each point in the community has coordinates (x,y) in this grid, for 10x10, 8y8 with x and y measured in kilometers. Suppose the value of the land located at the point (x,y) is V thousand dollars, where

    V(x,y)=(250+17x)e0.01x0.05y.

    Estimate the value of the block of land occupying the rectangular region 1x3, 0y2.
    1. 759 thousand dollars
    2. 859 thousand dollars
    3. 959 thousand dollars
    4. None of the above
  16. 訣竅按其意義作重積分計算即可。
    解法直接作重積分

    Value=3120V(x,y)dxdy=(20e0.05ydy)[31(250+17x)e0.01xdx]=20e0.05y|2010031(250+17x)de0.01x=2000(1e0.1)[(250+17x)e0.01x|311731e0.01xdx]=2000(1e0.1)(301e0.03267e0.01+1700e0.01x|31)=2000(1e0.1)(2001e0.031967e0.01)1059

    故選(d)。

  17. If a positive variable λ follows a gamma distribution, i.e., λGamma(α,β), where α and β are positive real numbers. Consequently, the probability density function for λ is as follows.

    f(λ)=βα1Γ(α)λα1eβλ,

    where Γ(Z) is the gamma function and defined as

    Γ(Z)=0ettZ1dt,

    if Z is a complex number with a positive real part. What is the var(λ) given α=1 and β=2? (5%)
    1. 1/4
    2. 1/2
    3. 1
    4. None of the above
  18. 訣竅回憶變異數與期望值等定義,並使用分部積分法計算其值。
    解法α=1β=2 時,其機率密度函數為

    f(λ)=2e2λ

    那麼分別使用分部積分法計算有

    E[λ]=0λf(λ)dλ=20λe2λdλ=λe2λ|0+0e2λdλ=e2λ2|0=12

    以及

    E[λ2]=0λ2f(λ)dλ=20λ2e2λdλ=λ2e2λ|0+20λe2λdλ=12

    因此變異數為

    var(λ)=E[λ2](E[λ])2=12(12)2=14

    故選(a)。

  19. (5%) The death rate and birth rate of many animal and plant species fluctuate periodically with the seasons. The population P(t) of such a species at time t changes at a rate that may be modeled by a differential equation of the form

    dPdt=(1+cos2πt)P.

    Given the initial population P(0) be 1000, what is the population P(1.5)?
    1. 1482
    2. 2482
    3. 3482
    4. None of the above
  20. 訣竅運用分離變量法解微分方程即可。
    解法移項有

    dPP=(1+cos2πt)dt

    同取不定積分可得

    ln(P(t))=t+sin2πt2π+C

    又因 P(0)=1000,故有 C=ln1000=3ln10。因此有

    P(t)=1000exp(t+sin(2πt)2π)

    t=1.5,可得

    P(1.5)=1000exp(1.5)10002.7181.54481

For Questions 11 to 15, show your calculations/proof in detail on the answer sheet.
  1. (10%) Find dy/dx given that y3+y25yx2=4.
  2. 訣竅運用隱函數微分求解即可。
    解法使用隱函數微分,直接對 x 求導有

    3y2dydx+2ydydx5dydx2x=0

    整理可解得

    dydx=2x3y2+2y5


  3. (10%) Evaluate

    10arcsin(x)dx.

  4. 訣竅運用分部積分法直接計算即可。
    解法使用分部積分法可知

    10arcsin(x)dx=xarcsin(x)|1010x11x2dx=π2+1x2|10=π21


  5. (10%) Find the interval of convergence for k=12kxkk.
  6. 訣竅運用比值審歛法的概念計算收斂半徑,隨後決定端點的收斂性。
    解法使用比值審歛法可知

    R=limk|akak+1|=limk|2kkk+12k+1|=12

    故確定在 x(12,12) 上收斂。現檢查端點如下
    • x=12 時級數寫為 k=1(1)kk,由交錯級數審歛法可知收斂;
    • x=12 時級數寫為 k=11k,此時調和級數可知其發散。
    因此收歛區間為 [12,12)

  7. (10%) Find the surface area of the portion of the plane x+y+z=1 that lies in the first octant (where x0, y0, z0).
  8. 訣竅由三角形面積公式計算;亦可運用曲面積分計算之。
    解法一容易注意到平面 x+y+z=1 與三軸的交點分別為 (1,0,0)(0,1,0)(0,0,1),容易注意到該三角形為邊長為 2 的正三角形,故其面積為 3422=32
    解法二容易注意到平面 x+y+z=1 與三軸的交點分別為 A(1,0,0)B(0,1,0)C(0,0,1),那麼三角形面積為

    Area=12|AB×AC|=12|(1,1,0)×(1,0,1)|=12|(1,1,1)|=32

    解法三D={(x,y)R2:x+y1,x,y0},而平面可寫為 z=f(x,y):=1xy,故曲面面積可表達為

    Area=


  9. (10\%) Suppose X is a metric space and K is a subset of X. Describe and explain the definition of K being a compact set.
  10. 訣竅回憶起關於緊緻集的定義並陳述即可。
    解法我們稱 K 為在 X 中的緊緻集,其定義為「若有一族開集合 \left\{O_i\right\}_{i\in I} 滿足 \displaystyle K\subseteq\bigcup_{i\in I}O_i,則存在有限個標號 i_1,\dots,i_n 滿足 \displaystyle K\subseteq\bigcup_{k=1}^nO_{i_k}。」其意指如果 K 有一個開覆蓋,那麼就可以取有限個來蓋住 K

沒有留言:

張貼留言