For Questions 1 to 7, show your calculations in detail on the answer sheet.
- ($10\%$) Evaluate the limit $\displaystyle\lim_{x\to0}\frac{e^{3x}-1}x$.
- ($10\%$) Find the area of the region bounded by the graphs of $f\left(x\right)=-x^2+2x$ and $g\left(x\right)=3x^3-x^2-10x$.
- ($10\%$) Evaluate $\displaystyle\int\frac{\sin\sqrt{x}}{\sqrt{x}}dx$.
- ($10\%$) Find the values of $x$ for which the power series is convergent: $\displaystyle\sum_{n=1}^{+\infty}\left(-1\right)^{n+1}\frac{2^nx^n}{n3^n}$.
- 當 $\displaystyle x=-\frac32$ 時級數寫為 $\displaystyle\sum_{n=1}^{\infty}\frac{-1}n$,此為調和級數從而發散;
- 當 $\displaystyle x=\frac32$ 時級數寫為 $\displaystyle\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n+1}}n$,此由交錯級數審歛法可知收斂。
- ($10\%$) Find $\displaystyle\frac{dy}{dx}$ if $y=\tanh^{-1}\left(\cos2x\right)$.
- ($35\%$) Let $w_T$ denote the terminal wealth of a uni-dollar investment after $T$ periods. Consider two possible cumulative distribution functions (CDFs) for $w_T$ as follows.
$\begin{cases}\ln w_T\sim N\left(T\mu_F,T\sigma_F^2\right)&\text{if the CDF}~F\left(w_T\right)~\text{is considered}\\\ln w_T\sim N\left(T\mu_G,T\sigma_G^2\right)&\text{if the CDF}~G\left(w_T\right)~\text{is considered}\end{cases}$
where $N\left(\mu,\sigma^2\right)$ represents the normal distribution with the mean to be $\mu$ and the variance to be $\sigma^2$. For any utility function $U'\left(\cdot\right)\geq0$, the expected utility under $F$ or $G$ is$\displaystyle E_PU\left(w_T\right)=\int_0^{\infty}U\left(w_T\right)dP\left(w_T\right)$ for $P=F$ or $G$.
Last, $\displaystyle\Phi\left(c\right)\equiv\int_{-\infty}^c\frac1{\sqrt{2\pi}}e^{-\frac{x^2}2}dx$ is the CDF for the standard normal distribution.- ($5\%$) Find $w_T^*$ such that $F\left(w_T^*\right)=G\left(w_T^*\right)$.
- ($10\%$) Suppose that $\sigma_F>\sigma_G$. Prove $\displaystyle\int_0^{w_T^*}\left[G\left(w_T\right)-F\left(w_T\right)\right]dw_T<0$.
- ($20\%$) Consider a utility function
$U\left(w_T\right)=\begin{cases}w_T&\text{if}~w_T\leq M\\M\left[\ln\left(w_t/M\right)+1\right]&\text{if}~w_T>M\end{cases}$
where $M$ is a positive constant, and the expected utility under $F$ is$\displaystyle E_FU\left(w_T\right)=\int_0^MU\left(w_T\right)dF\left(w_T\right)+\int_M^{\infty}U\left(w_T\right)dF\left(w_T\right)=Ⅰ+Ⅱ$.
- ($5\%$) Prove that $\displaystyle0<Ⅰ<M\Phi\left(\frac{\ln M-T\mu_F}{\sqrt{T}\sigma_F}\right)$.
- ($10\%$) If $Ⅱ$ can be expressed as $M\left[\alpha\Phi\left(\beta\right)+\gamma e^{-\delta^2/2}\right]$, what are $\alpha$, $\beta$, $\gamma$, and $\delta$?
- ($5\%$) What is $\displaystyle\lim_{T\to\infty}\frac1TE_FU\left(w_T\right)$?
- 按照對數常態分配及其累積分配函數的定義可知
$\displaystyle\begin{aligned}&F\left(x\right)=\frac1{\sqrt{2\pi T}\sigma_F}\int_{-\infty}^x\frac{\exp\left[-\left(\ln s-T\mu_F\right)^2/\left(2T\sigma_F^2\right)\right]}sds,\\&G\left(x\right)=\frac1{\sqrt{2\pi T}\sigma_G}\int_{-\infty}^x\frac{\exp\left[-\left(\ln s-T\mu_G\right)^2/\left(2T\sigma_G^2\right)\right]}sds.\end{aligned}$
運用變數代換法,函數 $F$ 與 $G$ 可分別改寫為$\displaystyle F\left(x\right)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{\left(\ln x-T\mu_F\right)/\left(\sqrt{T}\sigma_F\right)}e^{-\frac{t^2}2}dt$, $\displaystyle G\left(x\right)=\frac1{\sqrt{2\pi}}\int_{-\infty}^{\left(\ln x-T\mu_G\right)/\left(\sqrt{T}\sigma_G\right)}e^{-\frac{t^2}2}dt$.
運用標準常態分佈的累積函數表達可知$\displaystyle F\left(x\right)=\Phi\left(\frac{\ln x-T\mu_F}{\sqrt{T}\sigma_F}\right)$, $\displaystyle G\left(x\right)=\Phi\left(\frac{\ln x-T\mu_G}{\sqrt{T}\sigma_G}\right)$
為了解方程式 $F\left(w_T^*\right)=G\left(w_T^*\right)$,我們應解方程式$\displaystyle\frac{\ln w_T^*-T\mu_F}{\sqrt{T}\sigma_F}=\frac{\ln w_T^*-T\mu_G}{\sqrt{T}\sigma_G}$
假若 $\sigma_F\neq\sigma_G$ 則可解得$\displaystyle w_T^*=\exp\left(\frac{T\left(\mu_G\sigma_F-\mu_F\sigma_G\right)}{\sigma_G-\sigma_F}\right)$
假若 $\sigma_F=\sigma_G$ 且 $\mu_F=\mu_G$,則無窮多組解;但 $\sigma_F=\sigma_G$ 且 $\mu_F\neq\mu_G$,則無解。 - 假若 $\sigma_F>\sigma_G$,那麼容易發現當 $0< w_T<w_T^*$ 時有不等式
$\displaystyle \ln w_T<\ln w_T^*=\frac{T\left(\mu_G\sigma_F-\mu_F\sigma_G\right)}{\sigma_G-\sigma_F}$
此表明$\displaystyle\frac{\ln w_T-T\mu_F}{\sqrt{T}\sigma_F}<\frac{\ln w_T-T\mu_G}{\sqrt{T}\sigma_G}$
從而 $F\left(w_T\right)-G\left(w_T\right)<0$,因此這個函數在 $\left[0,w_T^*\right]$ 上的積分恆負,證明完畢。 - 對於 $Ⅰ$ 而言,容易看出當 $w_T\in\left[0,M\right]$ 時 $U\left(w_T\right)=w_T$。又 $F'\left(w_T\right)>0$,這就說明了
$\displaystyle Ⅰ=\int_0^MU\left(w_T\right)dF\left(w_T\right)=\int_0^Mw_TF'\left(w_T\right)dw_T>0$
另一方面,可以由分部積分法看出$\displaystyle Ⅰ=w_TF\left(w_T\right)\Big|_{w_T=0}^{w_T=M}-\int_0^MF\left(w_T\right)dw_T<MF\left(M\right)=M\Phi\left(\frac{\ln M-T\mu_F}{\sqrt{T}\sigma_F}\right)$
證明完畢。 - 直接將已知的資訊代入後有
$\displaystyle Ⅱ=M\int_M^{\infty}\left(1+\ln\frac{w_T}{M}\right)\cdot\frac1{w_T\sqrt{2\pi T}\sigma_F}\exp\left[-\frac{\left(\left(\ln w_T-T\mu_F\right)/\left(\sqrt{T}\sigma_F\right)\right)^2}2\right]dw_T$
使用變數變換,令 $\displaystyle s=\frac{\ln w_T-T\mu_F}{\sqrt{T}\sigma_F}$,那麼- 當 $w_T\to\infty$ 時有 $s\to\infty$;
- 當 $w_T=M$ 時有 $\displaystyle s=\frac{\ln M-T\mu_F}{\sqrt{T}\sigma_F}$;
- 求導有 $\displaystyle ds=\frac{dw_T}{w_T\sqrt{T}\sigma_F}$。
$\displaystyle\begin{aligned}Ⅱ&=M\int_{\frac{\ln M-T\mu_F}{\sqrt{T}\sigma_F}}^{\infty}\left(s\sqrt{T}\sigma_F+1+T\mu_F-\ln M\right)\cdot\frac1{\sqrt{2\pi}}e^{-\frac{s^2}2}ds\\&=M\int_{\frac{\ln M-T\mu_F}{\sqrt{T}\sigma_F}}^{\infty}\frac{\sqrt{T}\sigma_F}{\sqrt{2\pi}}\cdot se^{-\frac{s^2}2}ds+M\left(1+T\mu_F-\ln M\right)\int_{\frac{\ln M-T\mu_F}{\sqrt{T}\sigma_F}}^{\infty}\frac1{\sqrt{2\pi}}e^{-\frac{s^2}2}ds\\&=\left.M\cdot-\frac{\sqrt{T}\sigma_F}{\sqrt{2\pi}}e^{-\frac{s^2}2}\right|_{\frac{\ln M-T\mu_F}{\sqrt{T}\sigma_F}}^{\infty}+M\left(1+T\mu_F-\ln M\right)\Phi\left(-\frac{\ln M-T\mu_F}{\sqrt{T}\sigma_F}\right)\\&=M\left[\left(1+T\mu_F-\ln M\right)\Phi\left(\frac{T\mu_F-\ln M}{\sqrt{T}\sigma_F}\right)+\frac{\sqrt{T}\sigma_F}{\sqrt{2\pi}}\exp\left(-\frac{\left(\left(\ln M-T\mu_F\right)^2/\left(\sqrt{T}\sigma_F\right)\right)^2}2\right)\right]\end{aligned}$
故取$\displaystyle \alpha=1+T\mu_F-\ln M$, $\displaystyle\beta=\frac{T\mu_F-\ln M}{\sqrt{T}\sigma_F}$, $\displaystyle\gamma=\frac{\sqrt{T}\sigma_F}{\sqrt{2\pi}}$
以及 $\displaystyle\delta=\frac{\ln M-T\mu_F}{\sqrt{T}\sigma_F}$。 - 由於根據6.3.1以及累積分配函數的特性可知 $Ⅰ<M$,因此 $Ⅰ/T$ 隨 $T$ 趨於無窮而趨於零。又又利用6.3.2的結果可以看出 $Ⅱ/T$ 隨 $T$ 趨於無窮而趨於 $M\mu_F$,因此所求
$\displaystyle\lim_{T\to\infty}\frac1TE_FU\left(w_T\right)=\lim_{T\to\infty}\left(\frac{Ⅰ}T+\frac{Ⅱ}T\right)=M\mu_F$
- 對於 $Ⅰ$ 而言,容易看出當 $w_T\in\left[0,M\right]$ 時 $U\left(w_T\right)=w_T$。又 $F'\left(w_T\right)>0$,這就說明了
- ($15\%$) Define $\displaystyle\Phi\left(c\right)\equiv\int_{-\infty}^c\frac1{\sqrt{2\pi}}e^{-\frac{x^2}2}dx$ to be the cumulative distribution function for the standard normal distribution and $a>0$ and $b>0$.
- ($5\%$) What is $\displaystyle\lim_{y\to\infty}e^{ay}\Phi\left(-b\sqrt{y}\right)$ if $a>b^2/2$?
- ($5\%$) What is $\displaystyle\lim_{y\to\infty}e^{ay}\Phi\left(-b\sqrt{y}\right)$ if $a\leq b^2/2$?
- ($5\%$) What is $\displaystyle\lim_{y\to\infty}e^{\frac{b^2y}2}\sqrt{y}\Phi\left(-b\sqrt{y}\right)$?
- 運用羅必達法則可知
$\displaystyle\lim_{y\to\infty}e^{ay}\Phi\left(-b\sqrt{y}\right)=\lim_{y\to\infty}\frac{\displaystyle\int_{-\infty}^{-b\sqrt{y}}\exp\left(-x^2/2\right)dx}{\sqrt{2\pi}e^{-ay}}=\lim_{y\to\infty}\frac{\displaystyle e^{-\frac{b^2y}2}\cdot-\frac{b}{2\sqrt{y}}}{-a\sqrt{2\pi}e^{-ay}}=\frac{b}{2a\sqrt{2\pi}}\lim_{y\to\infty}\frac{e^{(a-b^2/2)y}}{\sqrt{y}}=\infty$
其中最後一個等號是因為 $a-b^2/2>0$ 所致。 - 運用羅必達法則可知
$\displaystyle\lim_{y\to\infty}e^{ay}\Phi\left(-b\sqrt{y}\right)=\lim_{y\to\infty}\frac{\displaystyle\int_{-\infty}^{-b\sqrt{y}}\exp\left(-x^2/2\right)dx}{\sqrt{2\pi}e^{-ay}}=\lim_{y\to\infty}\frac{\displaystyle e^{-\frac{b^2y}2}\cdot-\frac{b}{2\sqrt{y}}}{-a\sqrt{2\pi}e^{-ay}}=\frac{b}{2a\sqrt{2\pi}}\lim_{y\to\infty}\frac{e^{(a-b^2/2)y}}{\sqrt{y}}=0$
其中最後一個等號是因為 $a-b^2/2\leq0$ 所致。 - 運用羅必達可知
$\displaystyle\begin{aligned}\lim_{y\to\infty}e^{\frac{b^2y}2}\sqrt{y}\Phi\left(-b\sqrt{y}\right)&=\lim_{y\to\infty}\frac{\displaystyle\int_{-\infty}^{-b\sqrt{y}}\exp\left(-x^2/2\right)dx}{\sqrt{2\pi}\exp\left(-b^2y/2\right)/\sqrt{y}}\\&=\lim_{y\to\infty}\frac{\displaystyle e^{-\frac{b^2y}2}\cdot-\frac{b}{2\sqrt{y}}}{\displaystyle-\frac{b^2\sqrt{2\pi}e^{-\frac{b^2y}2}}{2\sqrt{y}}-\frac{\sqrt{2\pi}e^{-\frac{b^2y}2}}{2y\sqrt{y}}}=\lim_{y\to\infty}\frac{by}{b^2y\sqrt{2\pi}+\sqrt{2\pi}}=\frac1{b\sqrt{2\pi}}\end{aligned}$
訣竅
使用羅必達法則求解即可;亦可辨識其為導數的定義。解法一
由羅必達法則立即有$\displaystyle\lim_{x\to0}\frac{e^{3x}-1}x=\lim_{x\to0}\frac{3e^{3x}}1=3$
解法二
設 $f\left(x\right)=e^{3x}$,那麼所求的極限式可辨識為如下的導數值$\displaystyle\lim_{x\to0}\frac{e^{3x}-1}{x}=\lim_{x\to0}\frac{f\left(x\right)-f\left(0\right)}{x-0}=f'\left(0\right)=3e^{3x}\Big|_{x=0}=3$
訣竅
先找出兩曲線的交點並明確出兩者有界區域的範圍,隨後透過積分求出面積。解法
為了找出兩圖形的交點,我們由代入消去法去解方程式 $-x^2+2x=3x^3-x^2-10x$,即 $x^3-4x=0$,能得 $x=0$ 與 $x=\pm2$。容易注意到當 $x\in\left(0,2\right)$ 上有 $f\left(x\right)>g\left(x\right)$,而當 $x\in\left(-2,0\right)$ 時有 $f\left(x\right)<g\left(x\right)$。故所求的面積為$\displaystyle\begin{aligned}A&=\int_{-2}^0\left[g\left(x\right)-f\left(x\right)\right]dx+\int_0^2\left[f\left(x\right)-g\left(x\right)\right]dx=3\int_{-2}^0\left(x^3-4x\right)dx+3\int_0^2\left(4x-x^3\right)dx\\&=\left.3\left(\frac{x^4}4-2x^2\right)\right|_{-2}^0+\left.3\left(\frac{x^4}4-2x^2\right)\right|_0^2=12+12=24\end{aligned}$
訣竅
運用變數變換的概念求不定積分即可。解法
直接由變數變換的概念演算可知$\displaystyle\int\frac{\sin\sqrt{x}}{\sqrt{x}}dx=2\int\sin\sqrt{x}d\sqrt{x}=-2\cos\sqrt{x}+C$
訣竅
運用比值審歛法的概念求出收斂半徑,隨後檢驗端點的收斂性。解法
由比值審歛法的概念有$\displaystyle R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\left|\frac{2^n}{n\cdot3^n}\cdot\frac{\left(n+1\right)3^{n+1}}{2^{n+1}}\right|=\frac32$
而對於端點的斂散性則檢驗如下訣竅
利用隱函數微分法求解;亦可將反雙曲函數的形式明確獲得後應用連鎖律即可。解法一
由條件可知$\displaystyle1-2\left(1+e^{2y}\right)^{-1}=\frac{e^{2y}-1}{e^{2y}+1}=\tanh y=\cos2x$
如此使用隱函數微分有$\displaystyle2\left(1+e^{2y}\right)^{-2}\cdot2e^{2y}\cdot\frac{dy}{dx}=-2\sin2x$
故解得 $\displaystyle\frac{dy}{dx}=-\frac1{e^{2y}}\cdot\frac{\sin2x}{2}\cdot\left(1+e^{2y}\right)^2$。又利用條件可注意到 $\displaystyle e^{2y}=\frac{1+\cos2x}{1-\cos2x}$,故$\displaystyle\frac{dy}{dx}=-\frac{1-\cos2x}{1+\cos2x}\cdot\frac{\sin2x}2\cdot\frac4{\left(1-\cos2x\right)^2}=-2\csc2x$
解法二
承解法一的過程可知$\displaystyle y=\frac12\ln\left|\frac{1+\cos2x}{1-\cos2x}\right|$
因此求導便有$\displaystyle\frac{dy}{dx}=\frac12\cdot\frac{1-\cos2x}{1+\cos2x}\cdot\frac{-2\sin2x\left(1-\cos2x\right)-\left(1+\cos2x\right)\cdot2\sin2x}{\left(1-\cos2x\right)^2}=-\frac{2\sin2x}{\left(1+\cos2x\right)\left(1-\cos2x\right)}=-2\csc2x$
沒有留言:
張貼留言