Solution to Partial Differential Equations: Methods and Applications (Robert McOwen) Section 4.4
- Consider (74) with Ω=(0,a)×(0,b), the rectangle of Example 1.
- Use the eigenvalues and eigenfunctions computed in the text to express the solution (77).
- Find the frequencies of the special solutions (78).
- Assume a=b/2. Find the two smallest frequencies and their corresponding nodal curves.
- We firstly recall that the eigenvalues and eigenfunctions for −Δ on Ω=(0,a)×(0,b):
λmn=π2(m2a2+n2b2),ϕmn(x,y)=sinmπxasinnπybfor m,n∈N.
This means −Δϕmn=λmnϕmn for m,n∈N and (x,y)∈Ω. In addition, we recall the wave equation with initial/boundary value problem (74) can be denoed as{utt=uxx+uyyfor (x,y)∈(0,a)×(0,b) and t>0,u(x,y,0)=g(x,y),ut(x,y,0)=h(x,y,0)for (x,y)∈(0,a)×(0,b),u(x,y,0)=0for (x,y)∈∂Ω and t>0.
Using the eigenfunction expansions, the initial data can be represented asg(x,y)=∞∑m,n=1Gmnϕmn(x,y)=∞∑m,n=1Gmnsinmπxasinnπyb,h(x,y)=∞∑m,n=1Hmnϕmn(x,y)=∞∑m,n=1Hmnsinmπxasinnπyb,
whereGmn=4ab∫a0∫b0g(x,y)ϕmn(x,y)dydx=4ab∫a0∫b0g(x,y)sinmπxasinnπybdydx,Hmn=4ab∫a0∫b0h(x,y)ϕmn(x,y)dydx=4ab∫a0∫b0h(x,y)sinmπxasinnπybdydx.
Let us assume the solution u can be expanded in the eigenfunctions with coefficients depending on t:u(x,y,t)=∞∑m,n=1vmn(t)ϕmn(x,y)=∞∑m,n=1vmn(t)sinmπxasinnπyb.
Assuming sufficient convergence to pass the derivatives inside the summation, this gives v″mn(t)+λmnvmn(t)=0 for t>0 and m,n∈N. Since λmn>0 for all m,n∈N, this ordinary differential equation has general solutionvmn(t)=Amncos(t√λmn)+Bmnsin(t√λmn).
At t=0, we get∞∑m,n=1Gmnϕmn(x,y)=g(x,y)=u(x,y,0)=∞∑m,n=1vmn(0)ϕmn(x,y)=∞∑m,n=1Amnϕmn(x,y),∞∑m,n=1Hmnϕmn(x,y)=h(x,y)=ut(x,y,0)=∞∑m,n=1v′mn(0)ϕmn(x,y)=∞∑m,n=1Bmn√λmnϕmn(x,y).
This gives Amn=Gmn and Bmn=Hmn/√λmn, which impliesAmn=4ab∫a0∫b0g(x,y)sinmπxasinnπybdydx,Bmn=4ab√λmn∫a0∫b0h(x,y)sinmπxasinnπybdydx.
Therefore, the solution of (74) can be given byu(x,y,t)=∞∑m,n=1(Amncos(t√λmn)+Bmnsin(t√λmn))sinmπxasinnπyb=4ab∞∑m,n=1sinmπxasinnπybcos(t√λmn)∫a0∫b0g(s,t)sinmπsasinnπtbdtds+4ab∞∑m,n=1sinmπxasinnπybsin(t√λmn)√λmn∫a0∫b0h(s,t)sinmπsasinnπtbdtds.
- By a phase shift, we may assume Bmn=0 and then
vmn(t)ϕmn=Amncos(t√λmn)ϕmn(x,y).
It is clear that the frequency fmn=√λmn2π=12√m2a2+n2b2 for m,n∈N.
The original exercise says that "show that thery are not integral multiples of each other", which is not true. In fact, it is possible that some of them are integral multiple of each other. For example, one may find thatfnn=1n2a2+n2b2=n2√1a2+1b2=nf11for n∈N.
More generally, we havef(mk)(nk)=12√(mk)2a2+(nk)2b2=k2√m2a2+n2b2=kfmnfor m,n,k∈N.
- When a=b/2, then the frequencies fmn can be denoted as
fmn=12√m2a2+n24a2=√4m2+n24a.
Clearly, the two smallest frequencies are f11=√54a=√52b and f12=√22a=√2b.- For m=n=1, the nodal curve is the set of zeros of ϕ11(x,y)=0, i.e.,
sinπxasinπy2a=0,
which is impossible because x∈(0,a) and y∈(0,b)=(0,2a). This means there is no any nodal curves. - For m=1 and n=2, the nodal curve is the set of zeros of ϕ12(x,y)=0, i.e.,
sinπxasin2πy2a=0,
which gives the horizontal line y=a=b/2 as the nodal curve.
- For m=n=1, the nodal curve is the set of zeros of ϕ11(x,y)=0, i.e.,
- Let Ω=(0,a)×(0,b)×(0,c)⊆R3. Find the Dirichlet eigenvalues and eigenfunctions for Δ in Ω.
- Consider the initial/boundary value problem with forcing term
{utt=Δu=f(x,t)for x∈Ω and t>0,u(x,0)=0,ut(x,0)=0for x∈Ω,u(x,t)=0for x∈∂Ω and t>0.
Use Duhamel's principle and an expansion of f in eigenfunctions to obtain a (formal) solution. - Suppose the forcing term in the previous exercise is f(x,t)=A(x)sinωt. Find the (formal) solution when (a) ω2≠λn for any of the eigenvalues λn, and (b) ω2=λk for some k (resonance).
- If ω2≠λn for any n∈N, then we note the following trigometric integral
∫t0sin(ωs)sin[(t−s)√λn]ds=12∫t0{cos[(ω+√λn)s−t√λn]−cos[(ω−√λn)s+t√λn]}ds=12{sin[(ω+√λn)s−t√λn]ω+√λn−sin[(ω−√λn)s+t√λn]ω−√λn}|t0=12(sin(ωt)+sin(t√λn)ω+√λn−sin(ωt)−sin(t√λn)ω−√λn)=ωsin(t√λn)−√λnsin(ωt)ω2−λn.
By the result of Exercise 3, the solution u can be represented asu(x,t)=∞∑n=1an√λnωsin(t√λn)−√λnsin(ωt)ω2−λnϕn(x)=∞∑n=1ϕn(x)√λnωsin(t√λn)−√λnsin(ωt)ω2−λn∫ΩA(y)ϕn(y)dy.
- Suppose ω2=λk for some k∈N. Then for n≠k, the same calculation in (1) gives
∫t0sin(s√λk)sin[(t−s)√λn]ds=√λksin(t√λn)−√λnsin(t√λk)λk−λn.
But for n=k, we have∫t0sin(s√λk)sin[(t−s)√λk]ds=12∫t0{cos[2s√λk−t√λk]−cos(t√λk)}ds=12(sin[2s√λk−t√λk]2√λk−scos(t√λk))|t0=sin(t√λk)−t√λkcos(t√λk)2√λk.
Therefore, by the result of Exercise 3, the solution u can be represented asu(x,t)=ak[sin(t√λk)−t√λkcos(t√λk)]2λkϕk(x)+∑n≠kan√λn√λksin(t√λn)−√λnsin(t√λk)λk−λnϕn(x).
Here we recall that am=∫ΩA(y)ϕm(y)dy for all m∈N. - Let Ω=(0,a)×(0,b) and consider the initial/boundary value problem
{utt=Δufor x∈Ω and t>0,u(x,0)=g(x),ut(x,0)=h(x)for x∈Ω,∂u∂ν(x,t)=0for x∈∂Ω and t>0.
- Find the eigenvalues and eigenfunctions for Laplaican operator associated Neumann problem on Ω.
- Find the solution as an expansion similar to (77).
- By separation of variables, we let u(x,y)=X(x)Y(y). Then the partial differential equation Δu+λu=0 in Ω becomes
X″(x)Y(y)+X(x)Y″(y)+λX(x)Y(y)=0for (x,y)∈(0,a)×(0,b),
which impliesX″(x)X(x)+Y″(y)Y(y)=−λfor (x,y)∈(0,a)×(0,b).
Since X″/X and Y″/Y are single-variable functions, we get the ordinary differential equationsX″(x)=λ1X(x),Y″(y)=λ2Y(y).
On the other hand, since X and Y are nonzero, the Neuamann boundary condition give X′(0)=X′(a)=0 and Y′(0)=Y′(b)=0. If λi>0, then we can use the boundary condition to obtain X≡0 or Y≡0. Thus, λi are nonpositive for i=1,2,3 so we write λi=−μ2i and the ordinary differential equations becomeX″(x)=−μ21X(x),Y″(y)=−μ22Y(y)
with λ=μ21+μ22. It is easy to check that μ1=mπa and μ2=nπb for m,n∈N∪{0}. Therefore, the eigenvalues areλmn=π2(m2a2+n2b2)
associated with the eigenfunctionsϕmn(x,y)=cosmπxacosnπybfor m,n∈N∪{0}.
- Using the eigenfunction expansion, the initial data can be represented as
g(x,y)=∞∑m,n=0Gmnϕmn(x,y)=∞∑m,n=0Gmncosmπxacosnπyb,h(x,y)=∞∑m,n=0Hmnϕmn(x,y)=∞∑m,n=0Hmncosmπxacosnπyb,
whereGmn={1ab∫a0∫b0g(x,y)dydxif m=n=0,2ab∫a0∫b0g(x,y)cosmπxadydxif m≠0, n=0,2ab∫a0∫b0g(x,y)cosnπybdydxif m=0, n≠0,4ab∫a0∫b0g(x,y)cosmπxacosnπybdydxif m≠0, n≠0,Hmn={1ab∫a0∫b0h(x,y)dydxif m=n=0,2ab∫a0∫b0h(x,y)cosmπxadydxif m≠0, n=0,2ab∫a0∫b0h(x,y)cosnπybdydxif m=0, n≠0,4ab∫a0∫b0h(x,y)cosmπxacosnπybdydxif m≠0, n≠0.
Let us assume the solution u can be expanded in the eigenfunctions with coefficients depending on t:u(x,y,t)=∞∑m,n=0vmn(t)ϕmn(x,y)=∞∑m,n=0vmn(t)cosmπxacosnπyb.
Assuming sufficient convergence to pass the derivatives inside the summation, this gives v″mn(t)+λmnvmn(t)=0 for t>0 and m,n∈N∪{0}. Since λmn≥0 for all m,n∈N∪{0}, this ordinary differential equaiton has general solutionvmn(t)={A00+B00tif m=n=0,Amncos(t√λmn)+Bmnsin(t√λmn)if m2+n2>0.
Note that vmn(0)=Amn for all m,n∈N∪{0}, v′00(0)=B00 and v′mn(0)=Bmn√λmn for (m,n)∈(N∪{0})2−{(0,0)}. At t=0, we get∞∑m,n=0Gmnϕmn(x,y)=g(x,y)=u(x,y,0)=∞∑m,n=0vmn(0)ϕmn=∞∑m,n=0Amnϕmn(x,y),∞∑m,n=0Hmnϕmn(x,y)=h(x,y)=ut(x,y,0)=∞∑m,n=0v′mn(0)ϕmn(x,y).
This gives Amn=Gmn for m,n∈N∪{0}, and B00=H00 and Bmn=Hmn/√λmn for (m,n)∈(N∪{0})2−{(0,0)}. Therefore, the solution u can be given byu(x,y,t)=∞∑m,n=0(Amncos(t√λmn)+Bmnsin(t√λmn))cosmπxacosnπyb,
where the coefficents are given above. - The ordinary differential equation r2y″+ry′+(r2−n2)y=0 for y(r) in r>0 is called Bessel's equation of order n, where n=0,1,2,…. This equation has a solution y=Jn(r), which behaves like rn as r→0, and has an infinite number of zeros Jn(r) at r=ρn1,ρn2,⋯→∞.
- If λ>0, show that y=Jn(√λr) solves the ordinary differential equation
r2y″+ry′+(λr2−n2)y=0.
- If Ω={(x1,x2)∈R2:x21+x22<a}, then use separation of variables and part (a) to obtain eigenvalues and eigenfunctions for
{Δu+λu=0in Ω,u=0on ∂Ω.
- Assuming the functions g(r,θ) and h(r,θ) may be expanded in the eigenfunctions of (b), find the solution of the initial/boundary value problem
{utt=Δuin Ω,u(r,θ,0)=g(r,θ)for 0≤r<a and 0≤θ<2π,ut(r,θ,0)=h(r,θ)for 0≤r<a and 0≤θ<2π,u(a,θ,t)=0for 0≤θ<2πand t>0.
- If λ>0, show that y=Jn(√λr) solves the ordinary differential equation
- We can compute the derivatives of y directly to get
y′=√λJ′n(√λr),y″=λJ″n(√λr).
Then one may verify thatr2y″+ry′+(λr2−n2)y=r2⋅λJ″n(√λr)+r⋅√λJ′n(√λr)+(λr2−n2)Jn(√λr)=(√λr)2J″n(√λr)+(√λr)J′n(√λr)+((√λr)2−n2)Jn(√λr)=0.
Hence function Jn(√λr) solve the ordinary differential equation r2y″+ry′+(λr2−n2)y=0. - Let ˜u(r,θ)=u(x1,x2) with r=√x21+x22 and θ=tan−1(x2/x1), or equivalently, x1=rcosθ and x2=rsinθ, where r∈[0,a) and θ∈[0,2π). Then the partial differential equation with boundary condition becomes
{˜urr(r,θ)+1r˜ur(r,θ)+1r2˜uθθ(r,θ)+λ˜u(r,θ)=0for (r,θ)∈[0,a)×[0,2π),˜u(a,θ)=0for θ∈[0,2π).
Using the separation of variables, we let ˜u(r,θ)=R(r)Θ(θ). Plugging into the partial differential equation, we get(r2R″(r)+rR′(r))Θ(θ)+R(r)Θ″(θ)+λR(r)Θ(θ)=0,
which impliesr2R″(r)+rR′(r)+λr2R(r)R(r)+Θ″(θ)Θ(θ)=0.
Since R and Θ are single-variable functions, there exsits a constant μ such that{r2R″(r)+rR′(r)+(λr2−μ)R(r)=0,Θ″(θ)+μΘ(θ)=0.
From the boundary condition, we have R(a)=0. In addition, we have the perodic condition: Θ(k)(0)=Θ(k)(2π) for all k∈N∪{0}.- If μ<0, then we write μ=−η2 for η>0. From Θ″(θ)−η2Θ(θ)=0, we get
Θ(θ)=C1eηθ+C2e−ηθ.
Since Θ(0)=Θ(2π) and Θ′(0)=Θ(2π), it is easy to derive C1=C2=0, which gives Θ≡0. This is a trivial solution. - If μ=0, then we have Θ″(θ)=0, which gives Θ(θ)=C1+C2θ. By Θ(0)=Θ(2π), we get Θ≡C1. This gives a nonzero solution, provided C1≠0.
- If μ>0, then we write μ=κ2 for κ>0. From Θ″(θ)+κ2Θ(θ)=0, we get
Θ(θ)=C1cos(κθ)+C2sin(κθ).
By Θ(0)=Θ(2π), we find κ=m∈N, i.e., μ=m2 for m∈N.
ϕmn(r,θ):=Jm(ρmnra)(C1cos(mθ)+C2sin(mθ))for m∈N∪{0} and n∈N.
- If μ<0, then we write μ=−η2 for η>0. From Θ″(θ)−η2Θ(θ)=0, we get
- Based on the assumption that functions g and h can be exapnded in the eigenfunctions of (b), we wrtie
g(r,θ)=∞∑m=0,n=1Jm(ρmnra)(G1,mncos(mθ)+G2,mnsin(mθ)),h(r,θ)=∞∑m=0,n=1Jm(ρmnra)(H1,mncos(mθ)+H2,mnsin(mθ)).
Let us assume the solution u can be expanded in the eigenfunctions with coefficients depending on t:u(r,θ,t)=∞∑m=0,n=1Jm(ρmnra)(vmn(t)cos(mθ)+wmn(t)sin(mθ)).
Assuming sufficient convergence to pass the derivatives inside the summation, this givesv″mn(t)+ρ2mna2vmn(t)=0,w″mn(t)+ρ2mna2wmn(t)=0.
Hence we getvmn(t)=Amncos(ρmnta)+Bmnsin(ρmnta),wmn(t)=Cmncos(ρmnta)+Dmnsin(ρmnta).
At t=0, we get∞∑m=0,n=1Jm(ρmnra)(G1,mncos(mθ)+G2,mnsin(mθ))=g(r,θ)=u(r,θ,0)=∞∑m=0,n=1Jm(ρmnra)(vmn(0)cos(mθ)+wmn(0)sin(mθ))=∞∑m=0,n=1Jm(ρmnra)(Amncos(mθ)+Cmnsin(mθ)),∞∑m=0,n=1Jm(ρmnra)(H1,mncos(mθ)+H2,mnsin(mθ))=h(r,θ)=ut(r,θ,0)=∞∑m=0,n=1Jm(ρmnra)(v′mn(0)cos(mθ)+w′mn(0)sin(mθ))=∞∑m=0,n=1Jm(ρmnra)[ρmnaBmncos(mθ)+ρmnaDmnsin(mθ)].
Thus, Amn=G1,mn, Bmn=aH1,mn/ρmn, Cmn=G2,mn and Dmn=aH2,mn/ρmn for m∈N∪{0} and n∈N. Therefore, the solutino u is given byu(r,θ,t)=∞∑m=0,n=1Jm(ρmnra)(G1,mncos(ρmnta)+aH1,mnρmnsin(ρmnta))cos(mθ)+∞∑m=0,n=1Jm(ρmnra)(G2,mncos(ρmnta)+aH2,mnρmnsin(ρmnta))sin(mθ).
- If λ≤0 and ∂Ω is smooth, show that only solution u∈C2(ˉΩ) of (62) is the trivial solution u≡0.
Solution
Solution
Consider the following Dirichelt eigenvalue problem:{Δu+λu=uxx+uyy+uzz+λu=0in Ω=(0,a)×(0,b)×(0,c),u(0,y,z)=u(a,y,z)=0for (y,z)∈[0,b]×[0,c],u(x,0,z)=u(x,b,z)=0for (x,z)∈[0,a]×[0,c],u(x,y,0)=u(x,y,c)=0for (x,y)∈[0,a]×[0,b].
Let u(x,y,z)=X(x)Y(y)Z(z). Then from the partial differential equation, we haveX″(x)Y(y)Z(z)+X(x)Y″(y)Z(z)+X(x)Y(y)Z″(z)+λX(x)Y(y)Z(z)=0for (x,y,z)∈(0,a)×(0,b)×(0,c),
which impliesX″(x)X(x)+Y″(y)Y(y)+Z″(z)Z(z)=−λfor (x,y,z)∈(0,a)×(0,b)×(0,c).
Since X″/X, Y″/Y and Z″/Z are single-variable functions, we get the ordinary differential equationsX″(x)=λ1X(x),Y″(y)=λ2Y(y),Z″(z)=λ3Z(z).
On the other hand, since X, Y and Z are nonzero, the boundary conditions give X(0)=X(a)=0, Y(0)=Y(b)=0, Z(0)=Z(c)=0. If λi≥0 for some i∈{1,2,3}, then we can use the boundary condition to obtain X≡0, Y≡0 or Z≡0. Thus, λi are negative for i=1,2,3 so we write λi=−μ2i and the ordinary differential equations becomeX″(x)=−μ21X(x),Y″(y)=−μ22Y(y),Z″(z)=−μ23Z(z)
with λ=μ21+μ22+μ23. It is easy to check that μ1=mπa, μ2=nπb and μ3=kπc for m,n,k∈N. Therefore, the eigenvalues areλmnk=π2(m2a2+n2b2+k2c2)
associated with the eigenfunctionsumnk(x,y,z)=sinmπxasinnπybsinkπzcfor m,n,k∈N.
Remark. In most books, we usually regard λ as the eigenvalues for −Δ rather than for Δ.
Solution 1
Based on Duhamel's principle, we firstly consider the following equations{Utt(x,t,s)−ΔU(x,t,s)=0for x∈Ω and t,s>0,U(x,0,s)=0for x∈Ω and s>0,Ut(x,0,s)=f(x,s)for x∈Ω and s>0,U(x,t,s)=0for x∈∂Ω and t,s>0.
Let λn and ϕn be eigenvalues and associated eigenfunctions of −Δ with the zero Diricihlet boundary condition. Then we may writef(x,s)=∞∑n=1bn(s)ϕn(x).
Suppose the solution U has the following form:U(x,t,s)=∞∑n=1Vn(t,s)ϕn(x).
Since λn are positive, it is easy to obtainVn(t,s)=An(s)cos(t√λn)+Bn(s)sin(t√λn),
and henceU(x,t,s)=∞∑n=1[A(s)cos(t√λn)+Bn(s)sin(t√λn)]ϕn(x).
Now we use the initial condition, we get An(s)≡0 and Bn(s)=bn(s)/√λn so the solution U becomesU(x,t,s)=∞∑n=1bn(s)√λnsin(t√λn)ϕn(x).
Finally, we apply Duhamel's principle to get the solution u given byu(x,t)=∫t0U(x,t−s,s)ds=∞∑n=1ϕn(x)√λn∫t0bn(s)sin[(t−s)√λn]ds.
Solution 2
Let λn and ϕn be eigenvalues and associated eigenfunctions of −Δ with the zero Diricihlet boundary condition. Moreover, we suppose the solution u and the forcing term f can be expanded in eigenfunctions:u(x,t)=∞∑n=1an(t)ϕn(t),f(x,t)=∞∑n=1bn(t)ϕn(x),
wherean(t)=∫Ωu(x,t)ϕn(x)dx,bn(t)=∫Ωf(x,t)ϕn(x)dx.
Then it suffices to determine the unknown coefficient an. For this purpose, we observe thata″n(t)=∫Ωutt(x,t)ϕn(x)dx=∫Ω(Δu(x,t)+f(x,t))ϕn(x)dx=∫ΩΔu(x,t)ϕn(x)dx+∫Ωf(x,t)ϕn(x)dx=∫Ωu(x,t)Δϕn(x)dx+∫Ωf(x,t)ϕn(x)dx(by integration by parts twice)=−λn∫Ωu(x,t)ϕn(x)dx+∫Ωf(x,t)ϕn(x)dx=−λnan(t)+bn(t).
In addition, the initial value data of an are given byan(0)=∫Ωu(x,0)ϕn(x)dx=0,a′n(0)=∫Ωut(x,0)ϕn(x)dx=0.
Hence an satisfies{a″n(t)+λnan(t)=bn(t)for t>0,an(0)=a′n(0)=0.
Based on Duhamel's principle, we consider the following equations{A″n(t,s)+λnA(t,s)=0for t,s>0,An(0,s)=0for s>0,A′n(0,s)=bn(s)for s>0.
It is easy to solveAn(t,s)=Cn(s)cos(t√λn)+Dn(s)sin(t√λn).
Then by initial condition, we get C1≡0 and Dn(s)=bn(s)/√λn. Thus, we getAn(t,s)=bn(s)√λnsin(t√λn).
By Duhamel's principle, we obtainan(t)=∫t0An(t−s,s)ds=1√λn∫t0bn(s)sin[(t−s)√λn]ds.
Therefore, the solution u can be represented asu(x,t)=∞∑n=1an(t)ϕn(x)=∞∑n=1ϕn(x)√λn∫t0bn(s)sin[(t−s)√λn]ds.
Solution
We firstly expand f asf(x,t)=∞∑n=1ϕn(x)∫Ω[A(y)sin(ωt)ϕn(y)]dy=∞∑n=1ansin(ωt)ϕn(x):=∞∑n=1bn(t)ϕn(x),
where an=∫ΩA(y)ϕn(y)dx and bn(t)=ansin(ωt).Solution
Solution
Solution
Multiplying (62) by u and then integrating it over Ω, we get0≤−∫Ω(|∇u|2−λu2)dx=∫Ω(uΔu+λu2)dx=0.
Here we have used the integration by parts with the zero Dirichlet boundary condition and the fact that |∇u|2−λu2≥0 in Ω because λ≤0. Thus, we get |∇u|2−λu2≡0, and hence u≡0. The proof is complete.Remark. This means there is no negative eigenvalue for −Δ, i.e., −Δu=λu.
沒有留言:
張貼留言