Processing math: 100%

2024年3月2日 星期六

Solution to Partial Differential Equations: Methods and Applications (Robert McOwen) Section 4.4

Solution to Partial Differential Equations: Methods and Applications (Robert McOwen) Section 4.4

  1. Consider (74) with Ω=(0,a)×(0,b), the rectangle of Example 1.
    1. Use the eigenvalues and eigenfunctions computed in the text to express the solution (77).
    2. Find the frequencies of the special solutions (78).
    3. Assume a=b/2. Find the two smallest frequencies and their corresponding nodal curves.
  2. Solution
    1. We firstly recall that the eigenvalues and eigenfunctions for Δ on Ω=(0,a)×(0,b):

      λmn=π2(m2a2+n2b2),ϕmn(x,y)=sinmπxasinnπybfor m,nN.

      This means Δϕmn=λmnϕmn for m,nN and (x,y)Ω. In addition, we recall the wave equation with initial/boundary value problem (74) can be denoed as

      {utt=uxx+uyyfor (x,y)(0,a)×(0,b) and t>0,u(x,y,0)=g(x,y),ut(x,y,0)=h(x,y,0)for (x,y)(0,a)×(0,b),u(x,y,0)=0for (x,y)Ω and t>0.

      Using the eigenfunction expansions, the initial data can be represented as

      g(x,y)=m,n=1Gmnϕmn(x,y)=m,n=1Gmnsinmπxasinnπyb,h(x,y)=m,n=1Hmnϕmn(x,y)=m,n=1Hmnsinmπxasinnπyb,

      where

      Gmn=4aba0b0g(x,y)ϕmn(x,y)dydx=4aba0b0g(x,y)sinmπxasinnπybdydx,Hmn=4aba0b0h(x,y)ϕmn(x,y)dydx=4aba0b0h(x,y)sinmπxasinnπybdydx.

      Let us assume the solution u can be expanded in the eigenfunctions with coefficients depending on t:

      u(x,y,t)=m,n=1vmn(t)ϕmn(x,y)=m,n=1vmn(t)sinmπxasinnπyb.

      Assuming sufficient convergence to pass the derivatives inside the summation, this gives vmn(t)+λmnvmn(t)=0 for t>0 and m,nN. Since λmn>0 for all m,nN, this ordinary differential equation has general solution

      vmn(t)=Amncos(tλmn)+Bmnsin(tλmn).

      At t=0, we get

      m,n=1Gmnϕmn(x,y)=g(x,y)=u(x,y,0)=m,n=1vmn(0)ϕmn(x,y)=m,n=1Amnϕmn(x,y),m,n=1Hmnϕmn(x,y)=h(x,y)=ut(x,y,0)=m,n=1vmn(0)ϕmn(x,y)=m,n=1Bmnλmnϕmn(x,y).

      This gives Amn=Gmn and Bmn=Hmn/λmn, which implies

      Amn=4aba0b0g(x,y)sinmπxasinnπybdydx,Bmn=4abλmna0b0h(x,y)sinmπxasinnπybdydx.

      Therefore, the solution of (74) can be given by

      u(x,y,t)=m,n=1(Amncos(tλmn)+Bmnsin(tλmn))sinmπxasinnπyb=4abm,n=1sinmπxasinnπybcos(tλmn)a0b0g(s,t)sinmπsasinnπtbdtds+4abm,n=1sinmπxasinnπybsin(tλmn)λmna0b0h(s,t)sinmπsasinnπtbdtds.

    2. By a phase shift, we may assume Bmn=0 and then

      vmn(t)ϕmn=Amncos(tλmn)ϕmn(x,y).

      It is clear that the frequency fmn=λmn2π=12m2a2+n2b2 for m,nN.

      The original exercise says that "show that thery are not integral multiples of each other", which is not true. In fact, it is possible that some of them are integral multiple of each other. For example, one may find that

      fnn=1n2a2+n2b2=n21a2+1b2=nf11for nN.

      More generally, we have

      f(mk)(nk)=12(mk)2a2+(nk)2b2=k2m2a2+n2b2=kfmnfor m,n,kN.

    3. When a=b/2, then the frequencies fmn can be denoted as

      fmn=12m2a2+n24a2=4m2+n24a.

      Clearly, the two smallest frequencies are f11=54a=52b and f12=22a=2b.
      • For m=n=1, the nodal curve is the set of zeros of ϕ11(x,y)=0, i.e.,

        sinπxasinπy2a=0,

        which is impossible because x(0,a) and y(0,b)=(0,2a). This means there is no any nodal curves.
      • For m=1 and n=2, the nodal curve is the set of zeros of ϕ12(x,y)=0, i.e.,

        sinπxasin2πy2a=0,

        which gives the horizontal line y=a=b/2 as the nodal curve.

  3. Let Ω=(0,a)×(0,b)×(0,c)R3. Find the Dirichlet eigenvalues and eigenfunctions for Δ in Ω.
  4. SolutionConsider the following Dirichelt eigenvalue problem:

    {Δu+λu=uxx+uyy+uzz+λu=0in Ω=(0,a)×(0,b)×(0,c),u(0,y,z)=u(a,y,z)=0for (y,z)[0,b]×[0,c],u(x,0,z)=u(x,b,z)=0for (x,z)[0,a]×[0,c],u(x,y,0)=u(x,y,c)=0for (x,y)[0,a]×[0,b].

    Let u(x,y,z)=X(x)Y(y)Z(z). Then from the partial differential equation, we have

    X(x)Y(y)Z(z)+X(x)Y(y)Z(z)+X(x)Y(y)Z(z)+λX(x)Y(y)Z(z)=0for (x,y,z)(0,a)×(0,b)×(0,c),

    which implies

    X(x)X(x)+Y(y)Y(y)+Z(z)Z(z)=λfor (x,y,z)(0,a)×(0,b)×(0,c).

    Since X/X, Y/Y and Z/Z are single-variable functions, we get the ordinary differential equations

    X(x)=λ1X(x),Y(y)=λ2Y(y),Z(z)=λ3Z(z).

    On the other hand, since X, Y and Z are nonzero, the boundary conditions give X(0)=X(a)=0, Y(0)=Y(b)=0, Z(0)=Z(c)=0. If λi0 for some i{1,2,3}, then we can use the boundary condition to obtain X0, Y0 or Z0. Thus, λi are negative for i=1,2,3 so we write λi=μ2i and the ordinary differential equations become

    X(x)=μ21X(x),Y(y)=μ22Y(y),Z(z)=μ23Z(z)

    with λ=μ21+μ22+μ23. It is easy to check that μ1=mπa, μ2=nπb and μ3=kπc for m,n,kN. Therefore, the eigenvalues are

    λmnk=π2(m2a2+n2b2+k2c2)

    associated with the eigenfunctions

    umnk(x,y,z)=sinmπxasinnπybsinkπzcfor m,n,kN.

    Remark. In most books, we usually regard λ as the eigenvalues for Δ rather than for Δ.


  5. Consider the initial/boundary value problem with forcing term

    {utt=Δu=f(x,t)for xΩ and t>0,u(x,0)=0,ut(x,0)=0for xΩ,u(x,t)=0for xΩ and t>0.

    Use Duhamel's principle and an expansion of f in eigenfunctions to obtain a (formal) solution.
  6. Solution 1Based on Duhamel's principle, we firstly consider the following equations

    {Utt(x,t,s)ΔU(x,t,s)=0for xΩ and t,s>0,U(x,0,s)=0for xΩ and s>0,Ut(x,0,s)=f(x,s)for xΩ and s>0,U(x,t,s)=0for xΩ and t,s>0.

    Let λn and ϕn be eigenvalues and associated eigenfunctions of Δ with the zero Diricihlet boundary condition. Then we may write

    f(x,s)=n=1bn(s)ϕn(x).

    Suppose the solution U has the following form:

    U(x,t,s)=n=1Vn(t,s)ϕn(x).

    Since λn are positive, it is easy to obtain

    Vn(t,s)=An(s)cos(tλn)+Bn(s)sin(tλn),

    and hence

    U(x,t,s)=n=1[A(s)cos(tλn)+Bn(s)sin(tλn)]ϕn(x).

    Now we use the initial condition, we get An(s)0 and Bn(s)=bn(s)/λn so the solution U becomes

    U(x,t,s)=n=1bn(s)λnsin(tλn)ϕn(x).

    Finally, we apply Duhamel's principle to get the solution u given by

    u(x,t)=t0U(x,ts,s)ds=n=1ϕn(x)λnt0bn(s)sin[(ts)λn]ds.

    Solution 2Let λn and ϕn be eigenvalues and associated eigenfunctions of Δ with the zero Diricihlet boundary condition. Moreover, we suppose the solution u and the forcing term f can be expanded in eigenfunctions:

    u(x,t)=n=1an(t)ϕn(t),f(x,t)=n=1bn(t)ϕn(x),

    where

    an(t)=Ωu(x,t)ϕn(x)dx,bn(t)=Ωf(x,t)ϕn(x)dx.

    Then it suffices to determine the unknown coefficient an. For this purpose, we observe that

    an(t)=Ωutt(x,t)ϕn(x)dx=Ω(Δu(x,t)+f(x,t))ϕn(x)dx=ΩΔu(x,t)ϕn(x)dx+Ωf(x,t)ϕn(x)dx=Ωu(x,t)Δϕn(x)dx+Ωf(x,t)ϕn(x)dx(by integration by parts twice)=λnΩu(x,t)ϕn(x)dx+Ωf(x,t)ϕn(x)dx=λnan(t)+bn(t).

    In addition, the initial value data of an are given by

    an(0)=Ωu(x,0)ϕn(x)dx=0,an(0)=Ωut(x,0)ϕn(x)dx=0.

    Hence an satisfies

    {an(t)+λnan(t)=bn(t)for t>0,an(0)=an(0)=0.

    Based on Duhamel's principle, we consider the following equations

    {An(t,s)+λnA(t,s)=0for t,s>0,An(0,s)=0for s>0,An(0,s)=bn(s)for s>0.

    It is easy to solve

    An(t,s)=Cn(s)cos(tλn)+Dn(s)sin(tλn).

    Then by initial condition, we get C10 and Dn(s)=bn(s)/λn. Thus, we get

    An(t,s)=bn(s)λnsin(tλn).

    By Duhamel's principle, we obtain

    an(t)=t0An(ts,s)ds=1λnt0bn(s)sin[(ts)λn]ds.

    Therefore, the solution u can be represented as

    u(x,t)=n=1an(t)ϕn(x)=n=1ϕn(x)λnt0bn(s)sin[(ts)λn]ds.


  7. Suppose the forcing term in the previous exercise is f(x,t)=A(x)sinωt. Find the (formal) solution when (a) ω2λn for any of the eigenvalues λn, and (b) ω2=λk for some k (resonance).
  8. SolutionWe firstly expand f as

    f(x,t)=n=1ϕn(x)Ω[A(y)sin(ωt)ϕn(y)]dy=n=1ansin(ωt)ϕn(x):=n=1bn(t)ϕn(x),

    where an=ΩA(y)ϕn(y)dx and bn(t)=ansin(ωt).
    1. If ω2λn for any nN, then we note the following trigometric integral

      t0sin(ωs)sin[(ts)λn]ds=12t0{cos[(ω+λn)stλn]cos[(ωλn)s+tλn]}ds=12{sin[(ω+λn)stλn]ω+λnsin[(ωλn)s+tλn]ωλn}|t0=12(sin(ωt)+sin(tλn)ω+λnsin(ωt)sin(tλn)ωλn)=ωsin(tλn)λnsin(ωt)ω2λn.

      By the result of Exercise 3, the solution u can be represented as

      u(x,t)=n=1anλnωsin(tλn)λnsin(ωt)ω2λnϕn(x)=n=1ϕn(x)λnωsin(tλn)λnsin(ωt)ω2λnΩA(y)ϕn(y)dy.

    2. Suppose ω2=λk for some kN. Then for nk, the same calculation in (1) gives

      t0sin(sλk)sin[(ts)λn]ds=λksin(tλn)λnsin(tλk)λkλn.

      But for n=k, we have

      t0sin(sλk)sin[(ts)λk]ds=12t0{cos[2sλktλk]cos(tλk)}ds=12(sin[2sλktλk]2λkscos(tλk))|t0=sin(tλk)tλkcos(tλk)2λk.

      Therefore, by the result of Exercise 3, the solution u can be represented as

      u(x,t)=ak[sin(tλk)tλkcos(tλk)]2λkϕk(x)+nkanλnλksin(tλn)λnsin(tλk)λkλnϕn(x).

      Here we recall that am=ΩA(y)ϕm(y)dy for all mN.

  9. Let Ω=(0,a)×(0,b) and consider the initial/boundary value problem

    {utt=Δufor xΩ and t>0,u(x,0)=g(x),ut(x,0)=h(x)for xΩ,uν(x,t)=0for xΩ and t>0.

    1. Find the eigenvalues and eigenfunctions for Laplaican operator associated Neumann problem on Ω.
    2. Find the solution as an expansion similar to (77).
  10. Solution
    1. By separation of variables, we let u(x,y)=X(x)Y(y). Then the partial differential equation Δu+λu=0 in Ω becomes

      X(x)Y(y)+X(x)Y(y)+λX(x)Y(y)=0for (x,y)(0,a)×(0,b),

      which implies

      X(x)X(x)+Y(y)Y(y)=λfor (x,y)(0,a)×(0,b).

      Since X/X and Y/Y are single-variable functions, we get the ordinary differential equations

      X(x)=λ1X(x),Y(y)=λ2Y(y).

      On the other hand, since X and Y are nonzero, the Neuamann boundary condition give X(0)=X(a)=0 and Y(0)=Y(b)=0. If λi>0, then we can use the boundary condition to obtain X0 or Y0. Thus, λi are nonpositive for i=1,2,3 so we write λi=μ2i and the ordinary differential equations become

      X(x)=μ21X(x),Y(y)=μ22Y(y)

      with λ=μ21+μ22. It is easy to check that μ1=mπa and μ2=nπb for m,nN{0}. Therefore, the eigenvalues are

      λmn=π2(m2a2+n2b2)

      associated with the eigenfunctions

      ϕmn(x,y)=cosmπxacosnπybfor m,nN{0}.

    2. Using the eigenfunction expansion, the initial data can be represented as

      g(x,y)=m,n=0Gmnϕmn(x,y)=m,n=0Gmncosmπxacosnπyb,h(x,y)=m,n=0Hmnϕmn(x,y)=m,n=0Hmncosmπxacosnπyb,

      where

      Gmn={1aba0b0g(x,y)dydxif m=n=0,2aba0b0g(x,y)cosmπxadydxif m0, n=0,2aba0b0g(x,y)cosnπybdydxif m=0, n0,4aba0b0g(x,y)cosmπxacosnπybdydxif m0, n0,Hmn={1aba0b0h(x,y)dydxif m=n=0,2aba0b0h(x,y)cosmπxadydxif m0, n=0,2aba0b0h(x,y)cosnπybdydxif m=0, n0,4aba0b0h(x,y)cosmπxacosnπybdydxif m0, n0.

      Let us assume the solution u can be expanded in the eigenfunctions with coefficients depending on t:

      u(x,y,t)=m,n=0vmn(t)ϕmn(x,y)=m,n=0vmn(t)cosmπxacosnπyb.

      Assuming sufficient convergence to pass the derivatives inside the summation, this gives vmn(t)+λmnvmn(t)=0 for t>0 and m,nN{0}. Since λmn0 for all m,nN{0}, this ordinary differential equaiton has general solution

      vmn(t)={A00+B00tif m=n=0,Amncos(tλmn)+Bmnsin(tλmn)if m2+n2>0.

      Note that vmn(0)=Amn for all m,nN{0}, v00(0)=B00 and vmn(0)=Bmnλmn for (m,n)(N{0})2{(0,0)}. At t=0, we get

      m,n=0Gmnϕmn(x,y)=g(x,y)=u(x,y,0)=m,n=0vmn(0)ϕmn=m,n=0Amnϕmn(x,y),m,n=0Hmnϕmn(x,y)=h(x,y)=ut(x,y,0)=m,n=0vmn(0)ϕmn(x,y).

      This gives Amn=Gmn for m,nN{0}, and B00=H00 and Bmn=Hmn/λmn for (m,n)(N{0})2{(0,0)}. Therefore, the solution u can be given by

      u(x,y,t)=m,n=0(Amncos(tλmn)+Bmnsin(tλmn))cosmπxacosnπyb,

      where the coefficents are given above.

  11. The ordinary differential equation r2y+ry+(r2n2)y=0 for y(r) in r>0 is called Bessel's equation of order n, where n=0,1,2,. This equation has a solution y=Jn(r), which behaves like rn as r0, and has an infinite number of zeros Jn(r) at r=ρn1,ρn2,.
    1. If λ>0, show that y=Jn(λr) solves the ordinary differential equation

      r2y+ry+(λr2n2)y=0.

    2. If Ω={(x1,x2)R2:x21+x22<a}, then use separation of variables and part (a) to obtain eigenvalues and eigenfunctions for

      {Δu+λu=0in Ω,u=0on Ω.

    3. Assuming the functions g(r,θ) and h(r,θ) may be expanded in the eigenfunctions of (b), find the solution of the initial/boundary value problem

      {utt=Δuin Ω,u(r,θ,0)=g(r,θ)for 0r<a and 0θ<2π,ut(r,θ,0)=h(r,θ)for 0r<a and 0θ<2π,u(a,θ,t)=0for 0θ<2πand t>0.

  12. Solution
    1. We can compute the derivatives of y directly to get

      y=λJn(λr),y=λJn(λr).

      Then one may verify that

      r2y+ry+(λr2n2)y=r2λJn(λr)+rλJn(λr)+(λr2n2)Jn(λr)=(λr)2Jn(λr)+(λr)Jn(λr)+((λr)2n2)Jn(λr)=0.

      Hence function Jn(λr) solve the ordinary differential equation r2y+ry+(λr2n2)y=0.
    2. Let ˜u(r,θ)=u(x1,x2) with r=x21+x22 and θ=tan1(x2/x1), or equivalently, x1=rcosθ and x2=rsinθ, where r[0,a) and θ[0,2π). Then the partial differential equation with boundary condition becomes

      {˜urr(r,θ)+1r˜ur(r,θ)+1r2˜uθθ(r,θ)+λ˜u(r,θ)=0for (r,θ)[0,a)×[0,2π),˜u(a,θ)=0for θ[0,2π).

      Using the separation of variables, we let ˜u(r,θ)=R(r)Θ(θ). Plugging into the partial differential equation, we get

      (r2R(r)+rR(r))Θ(θ)+R(r)Θ(θ)+λR(r)Θ(θ)=0,

      which implies

      r2R(r)+rR(r)+λr2R(r)R(r)+Θ(θ)Θ(θ)=0.

      Since R and Θ are single-variable functions, there exsits a constant μ such that

      {r2R(r)+rR(r)+(λr2μ)R(r)=0,Θ(θ)+μΘ(θ)=0.

      From the boundary condition, we have R(a)=0. In addition, we have the perodic condition: Θ(k)(0)=Θ(k)(2π) for all kN{0}.
      • If μ<0, then we write μ=η2 for η>0. From Θ(θ)η2Θ(θ)=0, we get

        Θ(θ)=C1eηθ+C2eηθ.

        Since Θ(0)=Θ(2π) and Θ(0)=Θ(2π), it is easy to derive C1=C2=0, which gives Θ0. This is a trivial solution.
      • If μ=0, then we have Θ(θ)=0, which gives Θ(θ)=C1+C2θ. By Θ(0)=Θ(2π), we get ΘC1. This gives a nonzero solution, provided C10.
      • If μ>0, then we write μ=κ2 for κ>0. From Θ(θ)+κ2Θ(θ)=0, we get

        Θ(θ)=C1cos(κθ)+C2sin(κθ).

        By Θ(0)=Θ(2π), we find κ=mN, i.e., μ=m2 for mN.
      Thus, μ=m2 for mN{0}. Then R(r)=Jm(λr). Then by R(a)=0, we λa=ρmn, which gives λmn=ρ2mn/a2 for mN{0} and nN. Therefore, the eigenvalues are λmn=ρ2mn/a2 and associated eigenfunctions are

      ϕmn(r,θ):=Jm(ρmnra)(C1cos(mθ)+C2sin(mθ))for mN{0} and nN.

    3. Based on the assumption that functions g and h can be exapnded in the eigenfunctions of (b), we wrtie

      g(r,θ)=m=0,n=1Jm(ρmnra)(G1,mncos(mθ)+G2,mnsin(mθ)),h(r,θ)=m=0,n=1Jm(ρmnra)(H1,mncos(mθ)+H2,mnsin(mθ)).

      Let us assume the solution u can be expanded in the eigenfunctions with coefficients depending on t:

      u(r,θ,t)=m=0,n=1Jm(ρmnra)(vmn(t)cos(mθ)+wmn(t)sin(mθ)).

      Assuming sufficient convergence to pass the derivatives inside the summation, this gives

      vmn(t)+ρ2mna2vmn(t)=0,wmn(t)+ρ2mna2wmn(t)=0.

      Hence we get

      vmn(t)=Amncos(ρmnta)+Bmnsin(ρmnta),wmn(t)=Cmncos(ρmnta)+Dmnsin(ρmnta).

      At t=0, we get

      m=0,n=1Jm(ρmnra)(G1,mncos(mθ)+G2,mnsin(mθ))=g(r,θ)=u(r,θ,0)=m=0,n=1Jm(ρmnra)(vmn(0)cos(mθ)+wmn(0)sin(mθ))=m=0,n=1Jm(ρmnra)(Amncos(mθ)+Cmnsin(mθ)),m=0,n=1Jm(ρmnra)(H1,mncos(mθ)+H2,mnsin(mθ))=h(r,θ)=ut(r,θ,0)=m=0,n=1Jm(ρmnra)(vmn(0)cos(mθ)+wmn(0)sin(mθ))=m=0,n=1Jm(ρmnra)[ρmnaBmncos(mθ)+ρmnaDmnsin(mθ)].

      Thus, Amn=G1,mn, Bmn=aH1,mn/ρmn, Cmn=G2,mn and Dmn=aH2,mn/ρmn for mN{0} and nN. Therefore, the solutino u is given by

      u(r,θ,t)=m=0,n=1Jm(ρmnra)(G1,mncos(ρmnta)+aH1,mnρmnsin(ρmnta))cos(mθ)+m=0,n=1Jm(ρmnra)(G2,mncos(ρmnta)+aH2,mnρmnsin(ρmnta))sin(mθ).


  13. If λ0 and Ω is smooth, show that only solution uC2(ˉΩ) of (62) is the trivial solution u0.
  14. SolutionMultiplying (62) by u and then integrating it over Ω, we get

    0Ω(|u|2λu2)dx=Ω(uΔu+λu2)dx=0.

    Here we have used the integration by parts with the zero Dirichlet boundary condition and the fact that |u|2λu20 in Ω because λ0. Thus, we get |u|2λu20, and hence u0. The proof is complete.

    Remark. This means there is no negative eigenvalue for Δ, i.e., Δu=λu.

沒有留言:

張貼留言