Solution to Partial Differential Equations: Methods and Applications (Robert McOwen) Section 4.5
- Let K(x)=−(4π|x|)−1, f∈C(R3) with f(x)=O(|x|−2−ϵ) as |x|→∞, and u(x)=∫R3K(x−y)f(y)dy.
- Show u∈C1(R3) and ∇u(x)=O(|x|−1−ϵ) as |x|→∞.
- If additionally f∈C1(R3), show u∈C2(R3).
- Since f(x)=O(|x|−2−ϵ) as |x|→∞, there exist positive constants C and R such that |f(y)|≤C|y|−2−ϵ for |y|≥R, which implies M=max is finite. For any x\in\mathbb R^3, we set R'=\max\{R,2|x|\} and pick \rho>0 such that B_\rho(x)\subseteq B_{R'}(0). Then u can be represented as
\displaystyle u(x)=\int_{B_{R'}(0)-B_\rho(x)}\!K(x-y)f(y)\,\mathrm dy+\int_{B_\rho(x)}\!K(x-y)f(y)\,\mathrm dy+\int_{\mathbb R^3-B_{R'}(0)}\!K(x-y)f(y)\,\mathrm dy.
The first integral is proper so it is well-defined. The second integral can be estimated by\begin{aligned}\left|\int_{B_\rho(x)}\!K(x-y)f(y)\,\mathrm dy\right|&\leq \frac{M}{4\pi}\int_{B_\rho(x)}\!\frac{\mathrm dy}{|x-y|}=\frac M{4\pi}\int_0^\pi\!\int_0^{2\pi}\!\int_0^\epsilon\!\frac{\rho^2\sin\phi}{\rho}\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\phi\\&=\frac{M}{4\pi}\cdot2\cdot2\pi\cdot\frac{\epsilon^2}2=\frac{M\epsilon^2}2.\end{aligned}
The third integral can be estimated by\begin{aligned}\left|\int_{\mathbb R^3-B_{R'}(0)}\!K(x-y)f(y)\,\mathrm dy\right|&\leq\frac{C}{4\pi}\int_{\mathbb R^3-B_{R'}(0)}\!\frac{|y|^{-2-\epsilon}}{|x-y|^2}\,\mathrm dy\leq\frac C{2\pi}\int_{\mathbb R^3-B_{R'}(0)}\!|y|^{-3-\epsilon}\,\mathrm dy\\&=\frac C{2\pi}\int_0^\pi\!\int_0^{2\pi}\!\int_{R'}^\infty\!\rho^{-3-\epsilon}\cdot\rho^2\sin\phi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\phi\\&=\left.\frac{C}{2\pi}\cdot2\cdot2\pi\cdot\frac{\rho^{-\epsilon}}{-\epsilon}\right|_{R'}^\infty=\frac{2C(R')^{-\epsilon}}{\epsilon}.\end{aligned}
Here we have used the inequality |x-y|\geq|y|/2 for y\in\mathbb R^3-B_{R'}(0). Therefore, the Newtonian potential u of f is well-defined for all x\in\mathbb R^3.
For any i=1,\dots,n, let\displaystyle u_{(i)}(x)=\int_{\mathbb R^3}\!\frac{\partial K}{\partial x_i}(x-y)f(y)\,\mathrm dy=\frac1{4\pi}\int_{\mathbb R^3}\frac{x_i-y_i}{|x-y|^3}f(y)\,\mathrm dy,
which is well-defined because \displaystyle\frac{\partial K}{\partial x_i} is O(|x-y|^{-2} as |x-y|\to0 and \displaystyle\frac{\partial K}{\partial x_i}(x-y)f(y) is O(|y|^{-4-\epsilon}) as |y|\to\infty (as for the above estimate of u). To show \displaystyle u_{(i)}=\frac{\partial u}{\partial x_i}, we first approximate u by a smooth function as follows. Let \eta\in C^\infty(\mathbb R) satisfy \eta(t)=0 for t<1, \eta(t)=1 for t>2 and 0\leq\eta(t)\leq1 and 0\leq\eta'(t)\leq2 for all t. Then we define\begin{aligned}u_\delta(x)&=\int_{\mathbb R^3}\!K_\delta(x-y)f(y)\,\mathrm dy:=\int_{\mathbb R^3}\!K(x-y)\eta\left(\frac{|x-y|}\delta\right)f(y)\,\mathrm dy\\&=-\frac1{4\pi}\int_{\mathbb R^3}\!\frac{\eta(|x-y|/\delta)}{|x-y|}f(y)\,\mathrm dy\quad\text{for}~x\in\mathbb R^3,\end{aligned}
where \displaystyle K_\delta(z)=-\frac{\eta(|z|/\delta)}{|z|} for \delta>0 and z\in\mathbb R^3. Note that K_\delta is smooth so u_\delta is also smooth and satisfies\begin{aligned}\frac{\partial u_\delta}{\partial x_i}(x)=\frac1{4\pi}\int_{\mathbb R^3}\!\left[\frac{x_i-y_i}{|x-y|^3}\eta\left(\frac{|x-y|}{\delta}\right)+\frac{x_i-y_i}{\delta|x-y|}\eta'\left(\frac{|x-y|}{\delta}\right)\right]f(y)\,\mathrm dy\end{aligned}
It is straightforward to check that u_\delta\to u uniformly on any compact subsets of \mathbb R^3, which means u is continuous in \mathbb R^3. Now we prove \displaystyle\frac{\partial u_\delta}{\partial x_i}\to u_{(i)} as \delta\to0. Since \eta(t)=1 for t>2, we observe that\begin{aligned}u_{(i)}(x)-\frac{\partial u_\delta}{\partial x_i}(x)&=\frac1{4\pi}\int_{|x-y|<2\delta}\!\left\{\left[1-\eta\left(\frac{|x-y|}{\delta}\right)\right]\frac{x_i-y_i}{|x-y|^3}-\frac{x_i-y_i}{\delta|x-y|}\eta'\left(\frac{|x-y|}{\delta}\right)\right\}f(y)\,\mathrm dy\\&=\frac1{4\pi}\int_{|z|<2\delta}\left\{\left[1-\eta\left(\frac{|z|}\delta\right)\right]\frac{z_i}{|z|^3}-\frac{z_i}{\delta|z|}\eta'\left(\frac{|z|}\delta\right)\right\}f(x-z)\,\mathrm dz.\end{aligned}
It is easy to estimate the following integrals\begin{aligned} &\left|\frac1{4\pi}\int_{|z|<2\delta}\!\frac{z_i}{\delta|z|}\eta'\left(\frac{|z|}\delta\right)f(x-z)\,\mathrm dz\right|\leq\frac{2M}{4\pi\delta}\int_{|z|<2\delta}\mathrm dz=\frac{2M}{4\pi\delta}\cdot\frac{4\pi(2\delta)^3}3=\frac{16M\delta^2}3,\\&\begin{aligned}\left|\frac1{4\pi}\int_{|z|<2\delta}\left[1-\eta\left(\frac{|z|}{\delta}\right)\right]\frac{z_i}{|z|^3}f(x-z)\,\mathrm dz\right|&\leq\frac{M}{2\pi}\int_{|z|<2\delta}\!\frac{dz}{|z|^2}=\frac{M}{2\pi}\int_0^\pi\!\int_0^{2\pi}\int_0^\delta\!\frac{\rho^2\sin\phi}{\rho^2}\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\phi\\&=\frac{M}{2\pi}\cdot2\cdot2\pi\cdot\delta=2M\delta.\end{aligned}\end{aligned}
Thus, we see that\displaystyle\left|u_{(i)}(x)-\frac{\partial u_\delta}{\partial x_i}(x)\right|\leq \left(\frac{16\delta}3+2\right)M\delta\quad\text{for}~x\in\mathbb R^3,
which implies u_{(i)} is the uniform limit of the continuous functions \displaystyle\frac{\partial u_\delta}{\partial x_i} as \delta tends to zero. Recall that Theorem 7.12 of "Introduction to Analysis (Fourth Edition)" states that "Let (a,b) be a bounded interval and suppose that f_n is a sequence of functions which converges at some x_0\in(a,b). If each f_n is differentiable on (a,b) and f_n' converges uniformly on (a,b) as n\to\infty, then f_n converges uniformly on (a,b) and \displaystyle\lim_{n\to\infty}f_n'(x)=\left(\lim_{n\to\infty}f_n(x)\right)'". Therefore we show that u\in C^1(\mathbb R^3) and\displaystyle\frac{\partial u}{\partial x_i}(x)=u_{(i)}(x)=\frac1{4\pi}\int_{\mathbb R^3}\!\frac{x_i-y_i}{|x-y|^3}f(y)\,\mathrm dy.
Write x=|x|\omega for \omega\in\mathbb S^2 and use the change of variable y=|x|z, we find\begin{aligned}|\nabla u(x)|&\leq\frac1{4\pi}\int_{\mathbb R^3}\!\frac{|f(y)|}{|x-y|^2}\,\mathrm dy=\frac1{4\pi}\int_{\mathbb R^3}\!\frac{f(|x|z)}{|x-|x|z|^2}|x|^3\,\mathrm dz\\&=\frac{|x|}{4\pi}\int_{\mathbb R^3}\!\frac{f(|x|z)}{|\omega-z|^2}\,\mathrm dz=\frac{|x|}{4\pi}\left(\int_{B_{R/|x|}(0)}\!\frac{f(|x|z)}{|\omega-z|^2}\,\mathrm dz+\int_{\mathbb R^3-B_{R/|x|}(0)}\!\frac{f(|x|z)}{|\omega-z|^2}\,\mathrm dz\right).\end{aligned}
When |x|\geq2R, the first integral can be estimated by\displaystyle\int_{B_{R/|x|}(0)}\!\frac{f(|x|z)}{|\omega-z|^2}\,\mathrm dz\leq4M\int_{B_{R/|x|}(0)}\mathrm dz=4M\cdot\frac{4\pi(R/|x|)^3}3=\frac{16M\pi R^3}{3|x|^3}.
On the other hand, the second integral is estimated by\begin{aligned}\int_{\mathbb R^3-B_{R/|x|}(0)}\!\frac{f(|x|z)}{|\omega-z|^2}\,\mathrm dz&\leq C\int_{\mathbb R^3-B_{R/|x|}(0)}\frac{|x|^{-2-\epsilon}|z|^{-2-\epsilon}}{|\omega-z|^2}\,\mathrm dz\\&=C|x|^{-2-\epsilon}\int_{\mathbb R^3-B_{R/|x|}(0)}\!\frac{|z|^{-2-\epsilon}}{|\omega-z|^2}\,\mathrm dz\leq\tilde C|x|^{-2-\epsilon}.\end{aligned}
Here we have used the fact that improer integral is convergent because \displaystyle\frac{|z|^{-2-\epsilon}}{|\omega-z|^2}\bigg/\frac1{|z|^{4+\epsilon}}\to1 as |z|\to\infty and is O(|\omega-z|^{-2}) as z\to\omega. Therefore, we obtain\displaystyle|\nabla u(x)|\leq\frac{|x|}{4\pi}\left(\frac{16M\pi R^3}{3|x|^3}+\tilde C|x|^{-2-\epsilon}\right)\leq\hat C|x|^{-1-\epsilon}.
The original statement is that "Show that u\in C^1(\mathbb R^n) and \nabla u(x)=O(|x|^{-2})", which might be typos so I correct it directly. As my best knowledge, \nabla u= O(|x|^{-1-\epsilon}) is more reasonable because u=O(|x|^{-\epsilon}) as |x|\to\infty, which is shown in two papers: "On Helmholtz's theorem and the completeness of the Papkovich-Neuber stress functions for infinite domains" (Author: M. E. Gurtin) and "A Constructive Proof of Helmholtz’s Theorem" (Author: Bernardo De La Calle Ysern, José C. Sabina De Lis). If you have a better proof to improve this decaying rate, please tell me! Thank you. - Note that
\displaystyle\frac{\partial u}{\partial x_i}=\frac1{4\pi}\int_{\mathbb R^3}\!\frac{x_i-y_i}{|x-y|}f(y)\,\mathrm dy=\frac1{4\pi}\int_{\mathbb R^3}\!\frac{y_i}{|y|}f(x-y)\,\mathrm dy.
Then it is clear that\displaystyle\frac{\partial^2u}{\partial x_j\partial x_i}=\frac1{4\pi}\int_{\mathbb R^3}\!\frac{y_i}{|y|^3}\frac{\partial f}{\partial x_j}(x-y)\,\mathrm dy,
which is continuous in \mathbb R^3. Thus, u\in C^2(\mathbb R^3).
沒有留言:
張貼留言