Solution to Partial Differential Equations: Methods and Applications (Robert McOwen) Section 6.2
- Assume that $u\in H_0^{1,2}(\Omega)$ and $f\in L^2(\Omega)$, and (13) holds for all $v\in C_0^1(\Omega)$. Show that (13) holds for all $v\in H_0^{1,2}(\Omega)$.
- Show that the Poincaré inequality generalizes to $p\neq2$; that is, if $\Omega$ is a bounded domain and $1\leq p<\infty$, then
$\|u\|_p\leq C\|\nabla u\|_p,\quad\text{where}~C=C(\Omega,p)$
for all $u\in C_0^1(\Omega)$, and by completion for all $u\in H_0^{1,p}(\Omega)$. - Suppose $\Omega$ is unbounded but lies between two parallel hyperplanes $P_1$ and $P_2$.
- Show that the Poincaré inequality holds for $\Omega$.
- Show that there is a weak soluiton of the Dirichlet problem $\Delta u=f$ in $\Omega$ and $u=0$ on $\partial\Omega$, where $f\in L^2(\Omega)$.
- Suppose that $P_1$ and $P_2$ can be writen as $P_i=\{x\in\mathbb R^n\,:\,\vec n\cdot x=d_i\}$ for $i=1,2$, where $\vec n$ is the normal vector of $P_i$, and $d_i$'s are distinct real numbers. There exists a rotation operator $R:\mathbb R^n\to\mathbb R^n$ such that
$\tilde P_i:=R(P_i)\equiv\{y=Rx\in\mathbb R^n\,:\,x\in P_i\}=\{y=(y_1,\dots,y_n)\in\mathbb R^n\,:\,y_n=\tilde d_i\}$.
Without loss of generality, we assume $\tilde d_1<\tilde d_2$. Clearly, $R(\Omega)$ is also between $\tilde P_1$ and $\tilde P_2$, i.e., $\tilde\Omega:=R(\Omega)\equiv\{y\in Rx\,:\,x\in\Omega\}\subseteq S\equiv\{y=(y',y_n)\in\mathbb R^n\,:\,\tilde d_1\leq y_n\leq\tilde d_2\}$. Now for $u\in C_0^1(\Omega)$, we define $\tilde u:C_0^1(\tilde\Omega)\to\mathbb R$ by $\tilde u(y)=u(R^{-1}y)=u(x)$ for $y\in\tilde\Omega$. Recall that the Jacobian of rotation is $1$. Then using the change of variables, we have$\begin{aligned}\|u\|_p^p&=\int_\Omega\!|u|^p\,\mathrm dx=\int_{\tilde\Omega}\!|\tilde u|^p\,\mathrm dy=\int_{\mathbb R^{n-1}}\!\int_{\tilde d_1}^{\tilde d_2}\!|\tilde u|^p\,\mathrm dy_n\,\mathrm dy'\\&=\int_{\mathbb R^{n-1}}\left[y_n|\tilde u(y)|^p\Big|_{y_n=\tilde d_1}^{y_n=\tilde d_2}-p\int_{\tilde d_1}^{\tilde d_2}y_n\tilde u|\tilde u|^{p-2}\frac{\partial\tilde u}{\partial y_n}\,\mathrm dy_n\right]\mathrm dy'\\&=-p\int_{\mathbb R^{n-1}}\!\int_{\tilde d_1}^{\tilde d_2}\!y_n\tilde u|\tilde u|^{p-2}\frac{\partial\tilde u}{\partial y_n}\,\mathrm dy_n\,\mathrm dy'\leq p(\tilde d_2-\tilde d_1)\int_{\tilde\Omega}\!|\tilde u|^{p-1}|\nabla_y\tilde u|\,\mathrm dy\\&=p(\tilde d_2-\tilde d_1)\int_\Omega\!|u|^{p-1}|\nabla_xu|\,\mathrm dx=p(\tilde d_2-\tilde d_1)\|u\|_p^{p-1}\|\nabla u\|_p,\end{aligned}$
which means $\|u\|_p\leq C(\Omega,p)\|\nabla u\|_p$ with $C(\Omega,p)=p(\tilde d_2-\tilde d_1)$. The proof is complete. - Let $(H_0^{1,2}(\Omega),|\cdot|_{1,2})$ be the Hilbert space. Define $F:H_0^{1,2}(\Omega)\to\mathbb R$ by
$\displaystyle F(v)=-\int_\Omega\!fv\,\mathrm dx$ for $v\in H_0^{1,2}(\Omega)$.
Then $F$ is a bounded linear functional because$|F(v)|=\left|\int_\Omega\!fv\,\mathrm dx\right|\leq\|f\|_2\|v\|_2\leq\|f\|_2\sqrt{2(\tilde d_2-\tilde d_1)}\|v\|_{1,2}$,
where we have used the Cauchy-Schwarz inequality and then the Poincaré inequality. By the Riesz representation theorem, there exists an unique element $u\in H_0^{1,2}(\Omega)$ such that $F(v)=(v,u)_1$, which implies$\displaystyle-\int_\Omega\!\nabla v\cdot\nabla u\,\mathrm dx=-(v,u)_1=-F(v)=\int_\Omega\!fv\,\mathrm dx\quad\text{for all}~v\in H_0^{1,2}(\Omega)$.
Therefore, $u$ is the weak solution of the Dirichlet problem. - For a bounded domain $\Omega\subset\mathbb R^n$, let
$\displaystyle\lambda_1=\inf_{u\in C_0^1(\Omega)}\frac{\int_\Omega\!|\nabla u|^2\,\mathrm dx}{\int_\Omega\!|u|^2\,\mathrm dx}$.
As we see in Section 7.2, $\lambda_1$ is indeed the first eigenvalue of the Laplacian as defined in Section 4.4.- Prove that $\lambda_1>0$.
- Prove that, for every $f\in L^2(\Omega)$ and constant $c<\lambda_1$, the Dirichlet problem $\Delta u+cu=f$ in $\Omega$ in $\Omega$ with $u=0$ on $\partial\Omega$ has a weak solution $u\in H_0^{1,2}(\Omega)$.
- Since $\Omega\subseteq\mathbb R^n$ is a bounded domain, then by Theorem 1 (The Poincaré Inequality), there eixsts a constant $C=C(\Omega)$ such that $\displaystyle\int_\Omega\!|u|^2\,\mathrm dx\leq C(\Omega)\int_\Omega\!|\nabla u|^2\,\mathrm dx$ for $u\in C_0^1(\Omega)$, which means
$\displaystyle\frac{\int_\Omega\!|\nabla u|^2\,\mathrm dx}{\int_\Omega\!|u|^2\,\mathrm dx}\geq\frac1{C(\Omega)}\quad\text{for all}~u\in C_0^1(\Omega)$.
Taking the infimum over $C_0^1(\Omega)$, we get $\lambda_1\geq1/C(\Omega)>0$. The proof is complete. - It suffices to show that there exists $u\in H_0^{1,2}(\Omega)$ satisfying
$\displaystyle-\int_\Omega\!\nabla u\cdot\nabla v\,\mathrm dx+\int_\Omega\!cuv\,\mathrm dx=\int_\Omega\!fv\,\mathrm dx\quad\text{for all}~v\in H_0^{1,2}(\Omega)$.
Define the bilinear form $B:H_0^{1,2}(\Omega)\times H_0^{1,2}(\Omega)\to\mathbb R$ by$\displaystyle B(u,v)=\int_\Omega\!(\nabla u\cdot\nabla v-cuv)\,\mathrm dx\quad\text{for}~u,v\in H_0^{1,2}(\Omega).$
It is clear that$\displaystyle|B(u,v)|\leq\int_\Omega\!(|\nabla u||\nabla v|+|c||u||v|)\,\mathrm dx\leq\max\{1,|c|\}(|u|_{1,2}|v|_{1,2}+\|u\|_2\|v\|_2)\leq\max\{1,|c|\}\|u\|_{1,2}\|v\|_{1,2}$,
which means $B$ is bounded. On the other hand, $B$ is positive on $H_0^{1,2}(\Omega)$ because$\begin{aligned}B(u,u)&=\int_\Omega\!(|\nabla u|^2-cu^2)\,\mathrm dx\geq\begin{cases}\displaystyle\int_\Omega|\nabla u|^2\,\mathrm dx&\text{if}~c\leq0;\\\displaystyle\left(1-\frac c{\lambda_1}\right)\int_\Omega|\nabla u|^2\,\mathrm dx&\text{if}~0<c<\lambda_1\end{cases}\\&\geq\begin{cases}(1+C(\Omega))^{-1}\|u\|_{1,2}&\text{if}~c\leq0;\\\displaystyle(1+C(\Omega))^{-1}\left(1-\frac{c}{\lambda_1}\right)\|u\|_{1,2}&\text{if}~0<c<\lambda_1.\end{cases}\end{aligned}$
Hence by Theorem 3 at page 179 in the textbook, there exists a unique weak solution $u\in H_0^{1,2}(\Omega)$ of the Dirichlet problem $\Delta u+cu=f$ in $\Omega$ with $u=0$ on $\partial\Omega$. - Consider the Dirichlet problem for the Laplace equation as studied in Chapter 4: $\Delta u=0$ in $\Omega$ with $u=g$ on $\partial\Omega$, where $\Omega$ is a bounded domain. Suppose that $g\in C(\partial\Omega)$ satisfies $g=G\Big|_{\partial\Omega}$ for some $G\in C^2(\bar\Omega)$. How can you use the results in this section to find a weak solution for this problem?
- For $n=2$, compare the definition (21) of uniform ellipticity with the definition of ellipticity given in Section 2.2, and explain why they agree.
- Use (29) to show that the space $Y$ defined by the condition (28) is closed.
- Assume that the operator in (27) satisfies (21b), $|b_k(x)|\leq\eta$ for $x\in\Omega$ in (27), and $c(x)\equiv0$. Find a smallness condition on $\eta>0$ (in terms of $\epsilon$ and the Poincaré constant) that guarantees that the bilinear form (30) is positive, so that the Lax-Milgram theorem applies to (26).
Solution
For $v\in H_0^{1,2}(\Omega)$, there exists a sequence of functions $\{v_n\}_{n=1}^\infty\subseteq C_0^1(\Omega)$ such that $\displaystyle\lim_{n\to\infty}\|v_n-v\|_{1,2}=0$. Since $v_n\in C_0^1$ for $n\in\mathbb N$, then by (13) and (14), we have$\displaystyle-(u,v_n)_1=-\int_\Omega\!\nabla u\cdot\nabla v_n\,\mathrm dx=\int_\Omega\!fv_n\,\mathrm dx$.
Note that $|(u,v_n-v)_1|\leq\|\nabla u\|_2\|\nabla(v_n-v)\|_2\leq|\nabla u|_2\|v_n-v\|_{1,2}\to0$ as $n\to\infty$ and$\displaystyle\left|\int_\Omega\!f(v_n-v)\,\mathrm dx\right|\leq\|f\|_2\|v_n-v\|_2\leq\|f\|_2\|v_n-v\|_{1,2}\to0\quad\text{as}~n\to\infty$.
Therefore, we have$\begin{aligned}-\int_\Omega\!\nabla u\cdot\nabla v\,\mathrm dx&=-(u,v)_1=-(u,v_n+(v-v_n))_1=\displaystyle\lim_{n\to\infty}\left[-(u,v_n)_1+(u,v_n-v)_1\right]\\&=\lim_{n\to\infty}\int_\Omega\!fv_n\,\mathrm dx=\int_\Omega\!fv\,\mathrm dx+\lim_{n\to\infty}\int_\Omega\!f(v_n-v)\,\mathrm dx=\int_\Omega\!fv\,\mathrm dx.\end{aligned}$
This shows (13) holds for $v\in H_0^{1,2}(\Omega)$.Solution
Since $\Omega$ is a bounded domain, there exists $L>0$ such that $\Omega\subseteq Q\equiv\{x=(x_1,\dots,x_n)\in\mathbb R^n\,:\,|x_i|\leq L,~i=1,\dots,n\}$, a cube centerd with $(0,\dots,0)$ and with side length of $2L$. Write $Q=[-L,L]\times Q'$, where $Q'=\{x'=(x_2,\dots,x_n)\in\mathbb R^{n-1}\,:\,|x_i|\leq L,\,i=2,\dots,n\}$. Clearly, $u\in C_0^1(\Omega)$ implies $u\in C_0^1(Q)$. Then we can use the integration by parts in the $x_1$-direction and the Cauchy-Schwarz inequality to get$\begin{aligned}\|u\|_p^p&=\int_\Omega\!|u|^p\,\mathrm dx=\int_Q\!|u|^p\,\mathrm dx=\int_{Q'}\!\int_{-L}^L\!1\cdot|u|^p\,\mathrm dx_1\,\mathrm dx'\\&=\int_{Q'}\!\left[x_1|u|^p\Big|_{x_1=-L}^{x_1=L}-\int_{-L}^L\!x_1\cdot pu|u|^{p-2}\frac{\partial u}{\partial x_1}\,\mathrm dx_1\right]\mathrm dx'\\&=-p\int_{Q'}\!\int_{-L}^L\!x_1u|u|^{p-2}\frac{\partial u}{\partial x_1}\,\mathrm dx_1\,\mathrm dx'\leq pL\int_Q\!|u|^{p-1}|\nabla u|\,\mathrm dx\\&\leq pL\||u|^{p-1}\|_{p'}\|\nabla u\|_p=pL\left(\int_\Omega\!|u|^{(p-1)p'}\,\mathrm dx\right)^{1/p'}\|\nabla u\|_p\\&=pL\left[\left(\int_\Omega\!|u|^p\,\mathrm dx\right)^{1/p}\right]^{p-1}\|\nabla u\|_p=pL\|u\|_p^{p-1}\|\nabla u\|_p,\end{aligned}$
gives $\|u\|_p\leq pL\|\nabla u\|_p$. Hence we choose $C=pL$, which depends on $\Omega$ and $p$.Solution
Solution
Solution
Define $\tilde u=u-G$ in $\bar\Omega$. Then $\tilde u$ satisfies $\Delta\tilde u=f$ in $\Omega$ with $\tilde u=0$ on $\partial\Omega$, where $f=\Delta G$. Since $G\in C^2(\bar\Omega)$, we have $f\in C(\bar\Omega)\subseteq L^2(\Omega)$ and hence we can obtain the weak solution $\tilde u\in H_0^{1,2}(\Omega)$. Thus, the weak solution $u$ can be obtained from $u=\tilde u+G\in H^{1,2}(\Omega)$.Solution
Theses two definition, i.e., (21b) of Section 6.2 and (10) of Section 2.2, are agree because they both are equivalent to the matrix $\begin{bmatrix}a_{11}(x)&a_{12}(x)\\a_{21}(x)&a_{22}(x)\end{bmatrix}$ is positive definite.Solution
Let $\{y_n\}_{n=1}^\infty\subseteq Y$ be a sequence converging to $y^*\in X$. To show the closeness of $Y$, we need to prove $y^*\in Y$. Clearly, $\{y_n\}_{n=1}^\infty$ is Cauchy. By the definition of $Y$ (cf. (28)), there exists a corresponding sequence $\{w_{y_n}\}_{n=1}^\infty\subseteq X$ such that $B(w_{y_n},v)=\langle y_n,v\rangle$ for all $v\in X$ and $n\in\mathbb N$, which implies $B(w_{y_n}-w_{y_m},v)=\langle y_n-y_m,v\rangle$ for all $n,m\in\mathbb N$ and $v\in X$. Then by the positivity of $B$ or by (29), we have$\displaystyle\|w_{y_n}-w_{y_m}\|\leq\frac1\epsilon\|y_n-y_m\|\quad\text{for}~n,m\in\mathbb N$.
This shows that $\{w_{y_n}\}_{n=1}^\infty\subseteq X$ is also Cauchy. Since $X$ is a Hilbert space, $X$ is complete and hence $\{w_{y_n}\}_{n=1}^\infty$ is convergent. We denote the limit of $\{w_{y_n}\}_{n=1}^\infty$ by $w^*\in X$. Hence it suffices to show $B(w^*,v)=\langle y^*,v\rangle$ for all $v\in X$. Note that by the boundedness of $B$, we have$|B(w^*-w_{y_n},v)|\leq C\|w^*-w_{y_n}\|\|v\|\to0\quad\text{as}~n\to\infty$.
Thus, we find$\begin{aligned}B(w^*,v)&=\lim_{n\to\infty}[B(w_{y_n},v)+B(w^*-w_{y_n},v)]=\lim_{n\to\infty}\langle y_n,v\rangle\\&=\lim_{n\to\infty}[\langle y^*,v\rangle+\langle y_n-y^*,v\rangle]=\langle y^*,v\rangle.\end{aligned}$
Therefore, $y^*\in Y$ and $Y$ is closed subspace of $X$, which completes the proof.Solution
From (30) with $c(x)\equiv0$, we can use (21b) and $|b_k(x)|\leq\eta$ for $x\in\Omega$ to get$\begin{aligned}|B_L(u,u)|&=\left|\int_\Omega\!\left[\sum_{i,j=1}^na_{ij}(x)\frac{\partial u}{\partial x_i}\frac{\partial u}{\partial x_j}-\sum_{k=1}^nb_k(x)u\frac{\partial u}{\partial x_k}\right]\,\mathrm dx\right|\\&\geq\int_\Omega\!(\epsilon|\nabla u|^2-n\eta|u||\nabla u|)\,\mathrm dx\geq\epsilon(1+C)^{-1}\|u\|_{1,2}^2-\frac{n\eta}2\|u\|_{1,2}^2\\&=\left(\frac\epsilon{1+C}-\frac{n\eta}2\right)\|u\|_{1,2}^2,\end{aligned}$
where $C$ is the Poincaré constant. Thus, we find a sufficient condition $\displaystyle\eta<\frac{2\epsilon}{n(1+C)}$ such that $B_L$ is positive. Here we have used the facts that$\displaystyle\int_\Omega\!|u||\nabla u|\,\mathrm dx\leq\int_\Omega\!\frac{|u|^2+|\nabla u|^2}2\,\mathrm dx=\frac{\|u\|_{1,2}^2}2$
and$\displaystyle\|u\|_{1,2}^2=\int_\Omega\!|u|^2\,\mathrm dx+\int_\Omega\!|\nabla u|^2\,\mathrm dx\leq(1+C)\int_\Omega\!|\nabla u|^2\,\mathrm dx$.
沒有留言:
張貼留言