2017年9月3日 星期日

國立臺灣大學一百零六學年度轉學生入學考試試題詳解

※禁止使用計算機
※注意:請於答案卷內之「非選擇題作答區」標明題號依序作答。
  1. ($20\%$) Determine the convergence or divergence of the following series:

    $\displaystyle\sum_{n=1}^{\infty}\left(\frac{\cos\left(\pi n\right)}{\tanh\left(\pi n\right)}\frac{1-\cosh\left(\frac1n\right)}{\sin\left(\frac1n\right)}\right)$.

  2. 訣竅運用交錯級數審歛法即可。
    解法

    由於 $\displaystyle\cos\left(\pi n\right)=\left(-1\right)^n$,因此本題之級數可寫為 $\displaystyle\sum_{n=1}^{\infty}\left(-1\right)^{n+1}\frac{\cosh\left(\frac1n\right)-1}{\sin\left(\frac{1}{n}\right)\tanh\left(\pi n\right)}$,此為交錯級數。

    設 $\displaystyle f\left(x\right)=\frac{\cosh\left(\frac{1}{x}\right)-1}{\sin\left(\frac1x\right)\tanh\left(\pi x\right)}=\left[\cosh\left(\frac{1}{x}\right)-1\right]\csc\left(\frac1x\right)\coth\left(\pi x\right)$,並且記 $\displaystyle g\left(x\right)=\cosh\left(\frac1x\right)-1$、$\displaystyle h\left(x\right)=\csc\left(\frac{1}{x}\right)$、$k\left(x\right)=\coth\left(\pi x\right)$,如此對 $x\geq1$ 有

    $\begin{aligned} &g'\left(x\right)=-\frac{\sinh\left(1/x\right)}{x^2}<0,\\&h'\left(x\right)=-\frac{\csc\left(1/x\right)\cot\left(1/x\right)}{x^2}<0,\\&k'\left(x\right)=-\pi^2\mbox{csch}^2\left(\pi x\right)<0.\end{aligned}$

    且由 $g$、$h$、$k$ 在 $x\geq1$ 時非負,因此可知 $f$ 在 $\geq1$ 時遞減。另一方面由 $\displaystyle\lim_{x\to\infty}k\left(x\right)=1$、$\displaystyle\lim_{x\to\infty}g\left(x\right)h\left(x\right)=0$(由泰勒展開觀察之),因此有 $\displaystyle\lim_{x\to\infty}f\left(x\right)=0$。

    因此由交錯級數審歛法,交錯之正項遞減且收斂至零,因此此級數收斂。


  3. ($20\%$) For a second continuously differentiable function, $f\left(x,y,z\right)$, defined on the space $\mathbb{R}^3$, its Laplacian is defined to be

    $\displaystyle\bigtriangleup f=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}+\frac{\partial^2f}{\partial z^2}$.

    Derive the formula of $\bigtriangleup f$ in the spherical coordinate system.
  4. 訣竅熟悉球極座標變換並按照多變數連鎖律仔細計算之即可。
    解法由球極座標變換,設 $\left\{\begin{aligned} &x=\rho\sin\phi\cos\theta\\&y=\rho\sin\phi\sin\theta\\&z=\rho\cos\phi\end{aligned}\right.$,即有 $\left\{\begin{aligned} &\rho=\sqrt{x^2+y^2+z^2}\\&\phi=\arccos\left(\frac{z}{\rho}\right)\\&\theta=\arctan\left(\frac{y}x\right)\end{aligned}\right.$。
    首先分別表達 $f$ 對 $x$、$y$ 與 $z$ 的一階偏導數如下

    $\displaystyle\begin{aligned}&\frac{\partial f}{\partial x}=\frac{\partial f}{\partial\rho}\frac{\partial\rho}{\partial x}+\frac{\partial f}{\partial\phi}\frac{\partial\phi}{\partial x}+\frac{\partial f}{\partial\theta}\frac{\partial\theta}{\partial x}\\&\frac{\partial f}{\partial y}=\frac{\partial f}{\partial\rho}\frac{\partial\rho}{\partial y}+\frac{\partial f}{\partial\phi}\frac{\partial\phi}{\partial y}+\frac{\partial f}{\partial\theta}\frac{\partial\theta}{\partial y}\\&\frac{\partial f}{\partial z}=\frac{\partial f}{\partial\rho}\frac{\partial\rho}{\partial z}+\frac{\partial f}{\partial\phi}\frac{\partial\phi}{\partial z}+\frac{\partial f}{\partial\theta}\frac{\partial\theta}{\partial z}\end{aligned}$

    因此我們計算下列各項偏導有

    $\begin{array}{lll}\displaystyle\frac{\partial\rho}{\partial x}=\sin\phi\cos\theta,\quad&\displaystyle\frac{\partial\phi}{\partial x}=\frac{\cos\theta\cos\phi}{\rho},\quad&\displaystyle\frac{\partial\theta}{\partial x}=-\frac{\sin\theta}{\rho\sin\phi},\\\displaystyle\frac{\partial\rho}{\partial y}=\sin\phi\sin\theta,\quad&\displaystyle\frac{\partial\phi}{\partial y}=\frac{\sin\theta\cos\phi}{\rho},\quad&\displaystyle\frac{\partial\theta}{\partial y}=\frac{\cos\theta}{\rho\sin\phi},\\\displaystyle\frac{\partial\rho}{\partial z}=\cos\phi,\quad&\displaystyle\frac{\partial\phi}{\partial z}=-\frac{\sin\phi}{\rho},\quad&\displaystyle\frac{\partial\theta}{\partial z}=0.\end{array}$

    由此可得

    $\begin{array}{l}\displaystyle\frac{\partial f}{\partial x}=\sin\phi\cos\theta\frac{\partial f}{\partial\rho}+\frac{\cos\theta\cos\phi}{\rho}\frac{\partial f}{\partial\phi}-\frac{\sin\theta}{\rho\sin\phi}\frac{\partial f}{\partial\theta}\\\displaystyle\frac{\partial f}{\partial y}=\sin\phi\sin\theta\frac{\partial f}{\partial\rho}+\frac{\sin\theta\cos\phi}{\rho}\frac{\partial f}{\partial\phi}+\frac{\cos\theta}{\rho\sin\phi}\frac{\partial f}{\partial\theta}\\\displaystyle\frac{\partial f}{\partial z}=\cos\phi\frac{\partial f}{\partial\rho}-\frac{\sin\phi}{\rho}\frac{\partial f}{\partial\phi}\end{array}$

    據此計算二階偏導數。首先是 $\displaystyle\frac{\partial^2f}{\partial x^2}$:

    $\displaystyle\begin{aligned}\frac{\partial^2f}{\partial x^2}=&\sin\phi\cos\theta\frac{\partial}{\partial\rho}\frac{\partial f}{\partial x}+\frac{\cos\theta\cos\phi}{\rho}\frac{\partial}{\partial\phi}\frac{\partial f}{\partial x}-\frac{\sin\theta}{\rho\sin\phi}\frac{\partial}{\partial\theta}\frac{\partial f}{\partial x}\\=&\sin\phi\cos\theta\frac{\partial}{\partial\rho}\left(\sin\phi\cos\theta\frac{\partial f}{\partial\rho}+\frac{\cos\theta\cos\phi}{\rho}\frac{\partial f}{\partial\phi}-\frac{\sin\theta}{\rho\sin\phi}\frac{\partial f}{\partial\theta}\right)\\&+\frac{\cos\theta\cos\phi}{\rho}\frac{\partial}{\partial\phi}\left(\sin\phi\cos\theta\frac{\partial f}{\partial\rho}+\frac{\cos\theta\cos\phi}{\rho}\frac{\partial f}{\partial\phi}-\frac{\sin\theta}{\rho\sin\phi}\frac{\partial f}{\partial\theta}\right)\\&-\frac{\sin\theta}{\rho\sin\phi}\frac{\partial}{\partial\theta}\left(\sin\phi\cos\theta\frac{\partial f}{\partial\rho}+\frac{\cos\theta\cos\phi}{\rho}\frac{\partial f}{\partial\phi}-\frac{\sin\theta}{\rho\sin\phi}\frac{\partial f}{\partial\theta}\right)\\=&\sin^2\phi\cos^2\theta\frac{\partial^2f}{\partial\rho^2}+\frac{\cos^2\theta\cos^2\phi}{\rho^2}\frac{\partial^2f}{\partial\phi^2}+\frac{\sin^2\theta}{\rho^2\sin^2\phi}\frac{\partial^2f}{\partial\theta^2}\\&+\frac{2\cos^2\theta\sin\phi\cos\phi}{\rho}\frac{\partial^2f}{\partial\rho\partial\phi}-\frac{2\sin\theta\cos\theta}{\rho}\frac{\partial^2f}{\partial\rho\partial\theta}-\frac{2\sin\theta\cos\theta\cos\phi}{\rho^2\sin\phi}\frac{\partial^2f}{\partial\phi\partial\theta}\\&+\frac{\cos^2\theta\cos^2\phi+\sin^2\theta}{\rho}\frac{\partial f}{\partial\rho}+\frac{\sin^2\theta\cos\phi-2\sin\phi^2\cos\phi\cos^2\theta}{\rho^2\sin\phi}\frac{\partial f}{\partial\phi}\\&+\frac{2\sin\theta\cos\theta}{\rho^2\sin^2\phi}\frac{\partial f}{\partial\theta}\end{aligned}$

    接著是 $\displaystyle\frac{\partial^2f}{\partial y^2}$:

    $\displaystyle\begin{aligned}\frac{\partial^2f}{\partial y^2}=&\sin\phi\sin\theta\frac{\partial}{\partial\rho}\frac{\partial f}{\partial y}+\frac{\sin\theta\cos\phi}{\rho}\frac{\partial}{\partial\phi}\frac{\partial f}{\partial y}+\frac{\cos\theta}{\rho\sin\phi}\frac{\partial}{\partial\theta}\frac{\partial f}{\partial y}\\=&\sin\phi\sin\theta\frac{\partial}{\partial\rho}\left(\sin\phi\sin\theta\frac{\partial f}{\partial\rho}+\frac{\sin\theta\cos\phi}{\rho}\frac{\partial f}{\partial\phi}+\frac{\cos\theta}{\rho\sin\phi}\frac{\partial f}{\partial\theta}\right)\\&+\frac{\sin\theta\cos\phi}{\rho}\frac{\partial}{\partial\phi}\left(\sin\phi\sin\theta\frac{\partial f}{\partial\rho}+\frac{\sin\theta\cos\phi}{\rho}\frac{\partial f}{\partial\phi}+\frac{\cos\theta}{\rho\sin\phi}\frac{\partial f}{\partial\theta}\right)\\&+\frac{\cos\theta}{\rho\sin\phi}\frac{\partial}{\partial\theta}\left(\sin\phi\sin\theta\frac{\partial f}{\partial\rho}+\frac{\sin\theta\cos\phi}{\rho}\frac{\partial f}{\partial\phi}+\frac{\cos\theta}{\rho\sin\phi}\frac{\partial f}{\partial\theta}\right)\\=&\sin^2\phi\sin^2\theta\frac{\partial^2f}{\partial\rho^2}+\frac{\sin^2\theta\cos^2\phi}{\rho^2}\frac{\partial^2f}{\partial\phi^2}+\frac{\cos^2\theta}{\rho^2\sin^2\phi}\frac{\partial^2f}{\partial\theta^2}\\&+\frac{2\sin^2\theta\sin\phi\cos\phi}{\rho}\frac{\partial^2f}{\partial\rho\partial\phi}+\frac{2\sin\theta\cos\theta}{\rho}\frac{\partial^2f}{\partial\rho\partial\theta}+\frac{2\sin\theta\cos\theta\cos\phi}{\rho^2\sin\phi}\frac{\partial^2f}{\partial\phi\partial\theta}\\&+\frac{\sin^2\theta\cos^2\phi+\cos^2\theta}{\rho^2}\frac{\partial f}{\partial\rho}+\frac{\cos^2\theta\cos\phi-2\sin^2\theta\sin^2\phi\cos\theta}{\rho^2\sin\phi}\frac{\partial f}{\partial\phi}\\&-\frac{2\sin\theta\cos\theta}{\rho^2\sin^2\phi}\frac{\partial f}{\partial\theta}\end{aligned}$

    最後是 $\displaystyle\frac{\partial^2f}{\partial z^2}$:

    $\displaystyle\begin{aligned}\frac{\partial^2f}{\partial z^2}=&\cos\phi\frac{\partial}{\partial\rho}\frac{\partial f}{\partial z}-\frac{\sin\phi}{\rho}\frac{\partial}{\partial\phi}\frac{\partial f}{\partial z}\\=&\cos\phi\frac{\partial}{\partial\rho}\left(\cos\phi\frac{\partial f}{\partial\rho}-\frac{\sin\phi}{\rho}\frac{\partial f}{\partial\phi}\right)-\frac{\sin\phi}{\rho}\frac{\partial}{\partial\phi}\left(\cos\phi\frac{\partial f}{\partial\rho}-\frac{\sin\phi}{\rho}\frac{\partial f}{\partial\phi}\right)\\=&\cos^2\phi\frac{\partial^2f}{\partial\rho^2}+\frac{\sin^2\phi}{\rho^2}\frac{\partial^2f}{\partial\phi^2}-\frac{2\sin\phi\cos\phi}{\rho}\frac{\partial^2f}{\partial\rho\partial\phi}+\frac{\sin^2\phi}{\rho}\frac{\partial f}{\partial\rho}+\frac{2\sin\phi\cos\phi}{\rho^2}\frac{\partial f}{\partial\phi}\end{aligned}$

    藉由以上的計算將三者加總可得

    $\displaystyle\bigtriangleup f=\frac{\partial^2f}{\partial\rho^2}+\frac{1}{\rho^2}\frac{\partial^2f}{\partial\phi^2}+\frac{1}{\rho^2\sin^2\phi}\frac{\partial^2f}{\partial\theta^2}+\frac2\rho\frac{\partial f}{\partial\rho}+\frac{\cos\phi}{\rho^2\sin\phi}\frac{\partial f}{\partial\phi}$


  5. ($20\%$) Suppose that $f\left(x\right)>0$ is a continuously differentiable function defined on $x>1$. Let $S$ be the surface of revolution of the graph $y=f\left(x\right)$ about the $x$-axis. Let $E\subset\mathbb{R}^3$ be the solid enclosed by $S$ and $x=1$. More precisely,

    $E=\left\{\left(x,y,z\right)\in\mathbb{R}^3|x\geq1\mbox{ and }\sqrt{y^2+z^2}\leq f\left(x\right)\mbox{ for each }x\geq1\right\}$.

    If the surface area of $S$ is finite, prove that the volume of $E$ must also be finite.
  6. 訣竅此定理之逆敘述為經典之悖論:存在一旋轉體其體積有限但表面積無限。在估算體積時應充分留意表面積有限可先得到函數值有界,並由此估量體積。
    解法由於表面積 $A$ 有限,因此我們可以注意到

    $\begin{aligned}\displaystyle\lim_{t\to\infty}\sup_{x\geq t}\left[f^2\left(x\right)-f^2\left(1\right)\right]&=\limsup_{x\to\infty}\int_1^x\left(f^2\left(s\right)\right)'ds\leq\int_1^{\infty}\left|\left(f^2\left(s\right)\right)'\right|ds\\&=\int_1^{\infty}2f\left(s\right)\left|f'\left(s\right)\right|ds\leq\int_1^{\infty}2f\left(s\right)\sqrt{1+\left(\frac{dy}{dx}\left(s\right)\right)^2}ds=\frac{A}{\pi}<\infty\end{aligned}$

    因此存在 $t_0$ 使得 $\displaystyle\sup_{x\geq t_0}f\left(x\right)$ 有限,如此由 $f$ 的連續性可知 $f$ 在 $\left[1,\infty\right)$ 上有界(記為 $M$),因此 $E$ 的體積可被估算如下:

    $\displaystyle\int_1^{\infty}\pi f^2\left(x\right)dx\leq\int_1^{\infty}\frac{M}{2}\cdot2\pi f\left(x\right)dx\leq\frac{M}2\int_1^{\infty}2\pi f\left(x\right)\sqrt{1+\left(\frac{dy}{dx}\right)^2}dx=\frac{MA}2$.

    如此由 $A$ 的有限性即可推得 $V$ 的有限性,證明完畢。

  7. Let $C$ be the curve defined by $\left\{\left(x,y\right)\in\mathbb{R}^2|x^4+2x^2y^2+y^4-2x\left(x^2-y^2\right)=0\right\}$.
    1. ($10\%$) Sketch the curve $C$.
    2. Calculate the area of the region enclosed by $C$.
  8. 訣竅運用極座標變換後描點作圖並且運用極座標下的面積公式計算其面積。
    解法
    1. 運用極座標變換,令 $\left\{\begin{aligned}x=&r\cos\theta\\y=&r\sin\theta\end{aligned}\right.$,如此方程可改寫為

      $r^4\cos^4\theta+2r^4\cos^2\theta\sin^2\theta+r^4\sin^4\theta-2r^3\cos\theta\cos2\theta=0$

      即有 $r=2\cos\theta\cos2\theta$。描點繪圖如下:
    2. 運用面積公式可得

      $\displaystyle\begin{aligned}A=&\frac{1}{2}\int_0^{\pi}r^2d\theta\\=&2\int_0^{\pi}\cos^2\theta\cos^22\theta d\theta\\=&\frac{1}{8}\int_0^{\pi}\left(1+\cos2\theta\right)\left(1+\cos4\theta\right)d\theta\\=&\frac{1}{2}\int_0^{\pi}\left(1+\cos2\theta+\cos4\theta+\cos2\theta\cos4\theta\right)d\theta\\=&\frac{\pi}{2}+\frac{1}{2}\int_0^{\pi}\frac{\cos6\theta+\cos2\theta}{2}d\theta\\=&\frac{\pi}{2}\end{aligned}$


  9. ($20\%$) Let $a,b,c$ be three positive numbers with $a>b>c$. Let $\Sigma$ be the surface defined by

    $\displaystyle\frac{\left(x-b\right)^2}{a^2}+\frac{\left(y-c\right)^2}{b^2}+\frac{z^2}{c^2}=4$.

    Note that $\Sigma$ encloses a bounded solid. Set $\vec{n}$ to be the unit outer normal with respect to that solid. Consider the vector field

    $\displaystyle\vec{F}=\left(\frac{x}{\left(x^2+y^2+z^2\right)^{\frac32}}+\cos\left(yz\right),\frac{y}{\left(x^2+y^2+z^2\right)^{\frac32}}+y,\frac{z}{\left(x^2+y^2+z^2\right)^{\frac32}}+e^{z^2}\right)$.

    Calculate the flux integral $\displaystyle\int_{\Sigma}\vec{F}\cdot\vec{n}\,dS$.
  10. 訣竅運用高斯散度定理並且對奇異點圈出另外處理。
    解法首先,記 $\vec{G}$ 與 $\vec{H}$ 如下

    $\displaystyle\begin{aligned} &\vec{G}=\left(\frac{x}{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}},\frac{y}{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}},\frac{z}{\left(x^2+y^2+z^2\right)^{\frac{3}{2}}}\right),\\&\vec{H}=\left(\cos\left(yz\right),y,e^{z^2}\right).\end{aligned}$

    並且設 $\Omega$ 為 $\Sigma$ 所包圍之區域,那麼可以發現 $\vec{H}$ 在 $\Omega$ 上有一階地連續偏導函數,因此直接使用高斯散度定理可得

    $\displaystyle\begin{aligned}\int_{\Sigma}\vec{H}\cdot\vec{n}\,dS&=\iiint_{\Omega}\nabla\cdot\vec{H}\,dV\\&=\iiint_{\Omega}\left(1+2ze^{z^2}\right)dV\\&=\iiint_{\Omega}1\,dV+\iiint_{\Omega}2ze^{z^2}dV\\&=\frac43\pi\cdot2a\cdot2b\cdot2c+\iint_D\int_{-c\sqrt{4-\frac{\left(x-b\right)^2}{a^2}-\frac{\left(y-c\right)^2}{b^2}}}^{c\sqrt{4-\frac{\left(x-b\right)^2}{a^2}-\frac{\left(y-c\right)^2}{b^2}}}2ze^{z^2}dzdA=\frac{32}{3}\pi abc,\end{aligned}$

    其中 $\displaystyle D=\left\{\left(x,y\right)\in\mathbb{R}^2:\frac{\left(x-b\right)^2}{a^2}+\frac{\left(y-c\right)^2}{b^2}\leq4\right\}$。另一方面,因為 $\left(0,0,0\right)\in\Omega$,因此 $\vec{G}$ 在 $\Omega$ 上沒有連續地一階偏導數。可以取充分小的正數 $\varepsilon$ 使得 $B_\varepsilon(\vec{0})\subset\Omega$,從而 $\vec{G}$ 在 $\Omega-B_\varepsilon\left(\vec{0}\right)$ 上有連續地一階偏導函數,那麼在其上使用高斯散度定理可以直接得到

    $\displaystyle\int_{\Sigma\cup\partial B_\varepsilon(\vec{0})}\vec{G}\cdot\vec{n}\,dS=\iiint_{\Omega-B_\varepsilon(\vec{0})}\nabla\cdot\vec{G}\,dV=0$

    因此

    $\displaystyle\int_{\Sigma}\vec{G}\cdot\vec{n}\,dS=\int_{\partial B_\varepsilon(\vec{0})}\vec{G}\cdot\vec{n}\,dS,$

    其中 $\vec{n}$ 均表示所積分之區域指向外的單位法向量(在不同的積分中可能所指之方向會隨積分範圍而有所不同)。藉由直接計算可知

    $\displaystyle\int_{\partial B_\varepsilon(\vec{0})}\vec{G}\cdot\vec{n}\,dS=\iint_{\partial B_\varepsilon(\vec{0})}\frac{\left(x,y,z\right)}{\varepsilon^3}\cdot\frac{\left(x,y,z\right)}{\varepsilon}dS=4\pi\varepsilon^2\cdot\frac{1}{\varepsilon^2}=4\pi$.

    因此本題之所求為

    $\displaystyle\int_{\Sigma}\vec{F}\cdot\vec{n}\,dS=\int_{\Sigma}\vec{G}\cdot\vec{n}\,dS+\int_{\Sigma}\vec{H}\cdot\vec{n}\,dS=4\pi+\frac{32}3\pi abc$.

5 則留言:

  1. 可以請問怎樣像您一樣把數學符號打進網頁嗎??然後按下訣竅解法~可以顯示詳解是有需要什麼語法嗎??誠心請教 感謝回答 :)

    回覆刪除
    回覆
    1. 如果您會使用Latex的話,可以參考這篇文章唷!
      http://mropengate.blogspot.tw/2015/04/blogger-mathjax-latex.html

      刪除
    2. 原來是要用Latex~~來研究一下 感謝!!

      刪除
  2. 第5題,為何解法寫(0,0,0)不屬於Ω,(0,0,0)代入小於4

    回覆刪除