- (10%) Show that ther series ∞∑n=012n+1 diverges.
- (10%) The population of a town is increasing at the rate of 400te0.02t people per year, where t is the number of years from now. Find the total gain in population during the next 5 years.
- (10%) Find the solution of y′+(cosx)y=cosx, y(0)=2.
- (20%) Suppose x1 and x2 are bivariate normally distributed and the definitions of corresponding probability density functions are as follows.
f(x1)=1√2πσ21e−(x1−μ1)22σ21f(x2)=1√2πσ22e−(x2−μ2)22σ22f(x1,x2)=12π√σ21σ22(1−ρ2)e−12(1−ρ2)((x1−μ1)2σ21−2ρ(x1−μ1)(x2−μ2)σ1σ2+(x2−μ2)2σ22)
- (5%) Calculate ∫∞−∞ecx1f(x1)dx1.
- (5%) According to the definition of the conditional probability density function,
f(x2∣x1)=f(x1,x2)f(x1),
show thatf(x2∣x1)=1√2πσ22(1−ρ2)e−(x2−(μ2+ρσ2σ1(x1−μ1)))22σ22(1−ρ2)
- (10%) Calculate ∫∞−∞∫∞−∞ex1ecx2f(x1,x2)dx1dx2.
- 按照題目給定的函數整理並配方計算如下
∫∞−∞ecx1f(x1)dx1=1√2πσ21∫∞−∞exp[−(x1−μ1)22σ21+cx1]dx1=1√2πσ21∫∞−∞exp[−12σ21(x1−μ1−σ21c)2+2μ1c+σ21c22]dx1=√exp(2μ1c+σ21c2)2πσ21∫∞−∞exp[−12σ21(x1−μ1−σ21c)2]dx1=√exp(2μ1c+σ21c2)2πσ21⋅√2σ1√π=√exp(2μ1c+σ21c2)
- 按照定義可知
f(x2∣x1)=f(x1,x2)f(x1)=√2πσ212π√σ21σ22(1−ρ2)exp{−12(1−ρ2)[(x1−μ1)2σ21−2ρ(x1−μ1)(x2−μ2)σ1σ2+(x2−μ2)2σ22]+(x1−μ1)22σ21}=1√2πσ22(1−ρ2)exp{−12σ22(1−ρ2)[(x2−μ2)2−2ρσ2σ1(x1−μ1)(x2−μ2)]−ρ2(x1−μ1)22σ21(1−ρ2)}=1√2πσ22(1−ρ2)exp[−12σ22(1−ρ2)[(x2−μ2)−ρσ2σ1(x1−μ1)]2]=1√2πσ22(1−ρ2)exp[−[x2−(μ2+ρσ2σ1(x1−μ1))]22σ22(1−ρ2)]
計算完畢。 - 利用第二題的結果並交換積分次序,所求可以改寫如下
∫∞−∞∫∞−∞ex1ecx2f(x1,x2)dx1dx2=∫∞−∞[ex1f(x1)∫∞−∞ecx2f(x2∣x1)dx2]dx1
接著運用第一小題的結論可知∫∞−∞ecx2f(x2∣x1)dx2=√exp[2c(μ2+ρσ2σ1(x1−μ1))+σ22(1−ρ2)c2]
如此所求為∫∞−∞∫∞−∞ex1ecx2f(x1,x2)dx1dx2=√exp(σ22(1−ρ2)c2+2cμ2−2cρσ2σ1μ1)∫∞−∞e(cρσ2σ1+1)x1f(x1)dx1=√exp(σ22(1−ρ2)c2+2cμ2−2cρσ2σ1μ1+2μ1(cρσ2σ1+1)+σ21(cρσ2σ1+1)2)=√exp(c2σ22+2cμ2+2μ1+2cρσ1σ2+σ21)
- (10%) If f is differentiable at some number z, show that, for any positive numbers a and b with a<b,
f′(z)=limh→0a2f(z+bh)−b2f(z+ah)+(b2−a2)f(z)(a2b−b2a)h.
- (10%) Compute the line integral:
∫C(x3+x2+x+1)x4dx
where C is the lower quarter-circle centered at 0 joining −1−i√2 and 1−i√2 in the positive (counterclockwise) sense. - (10%)
- (5%) Evaluate the following integral:
∫2−1∫z+2−z(x+2z2)dxdz
- (5%) Switch the order of x and z in the above integrals, i.e., rewrite the above integral into a summation of terms of the form (You don't have to evaluate the integral).
∫??∫??(x+2z2)dzdx
- (5%) Evaluate the following integral:
- 直接計算定積分可知
∫2−1∫z+2−z(x+2z2)dxdz=∫2−1(x22+2xz2)|x=z+2x=−zdz=∫2−1((z+2)22+2(z+2)z2−(−z)22−2(−z)z2)dz=∫2−1(4z3+4z2+2z+2)dz=(z4+4z33+z2+2z)|2−1=36
- 原積分範圍為 {−z≤x≤z+2−1≤z≤2,由第一式可知 x−2≤z 且 −x≤z。為了比較 x−2 與 −x 的大小,我們可區分範圍 x∈[−2,1] 時有 −x≥x−2,從而 −x≤z≤2;而當 x∈[1,4] 時有 x−2≥−x,從而 x−2≤z≤2,故所求為
∫2−1∫z+2−z(x+2z2)dxdz=∫1−2∫2−x(x+2z2)dzdx+∫41∫2x−2(x+2z2)dzdx
- (20%) Find the limit:
- (10%)
limh→0−3h3+8h2−7h+114h3−h2+5
- (10%)
limz→0z2+2cosz−2z4
- (10%)
- 運用極限的四則運算定理可知
limh→0−3h3+8h2−7h+114h3−h2+5=limh→0(−3h3+8h2−7h+11)limh→0(4h3−h2+5)=115
【方法一】 運用羅必達法則可知
limz→0z2+2cosz−2z4=limz→02z−2sinz4z3=limz→01−cosz6z2=limz→0sinz12z=112
【方法二】 運用餘弦函數的泰勒展開式可知
limz→0z2+2cosz−2z4=limz→0z2+2(1−z22+z424−⋯)−2z4=limz→0z412−⋯z4=112
訣竅
利用極限比較審斂法即可判斷。解法
設 an=12n+1、bn=1n,容易知道 limn→∞anbn=12,故兩級數 ∞∑n=1an 與 ∞∑n=1bn 有相同的歛散性。而後者為調和級數(p 級數在 p=1 的情形)故發散,因此題目給定的級數也為發散級數。訣竅
依照題意表達出給定的量,由此可看出使用微積分基本定理表達淨人口成長。解法
設 P(t) 表在時刻 t 的人口數,那麼按照題意有 P′(t)=400te0.02t,故由微積分基本定理以及分部積分法計算五年後的人口淨成長為P(5)−P(0)=∫50P′(t)dt=400∫50te0.02tdt=20000∫50tde0.02t=20000(te0.02t|50−∫50e0.02tdt)=20000(5e0.1−50e0.02t|50)=105(e0.1−10e0.1+10)=105(10−9e0.1)
訣竅
運用積分因子法求解微分方程。解法
給定方程的積分因子為 e∫cosxdx=esinx,故兩邊同乘以 esinx 可得ddx(y(x)esinx)=esinxdydx(x)+esinx(cosx)y(x)=esinxcosx
故在區間 [0,x] 上取定積分可得esinxy(x)−y(0)=esinx−1
由 y(0)=2 可解得 y(x)=1+e−sinx。訣竅
第一小題將被積分函數重新配方後運用變數代換法求解;第二小題可直接利用定義計算;第三小題則將前兩小題的結果組合使用即可。解法
訣竅
運用導數的定義去改寫即可。解法
首先由導數的定義注意到limh→0a2f(z+bh)−a2f(z)bh=a2f′(z),limh→0b2f(z+ah)−b2f(z)ah=b2f′(z)
將兩式分別乘以 b 與 a 後相減有limh→0a2f(z+bh)−b2f(z+ah)+(b2−a2)f(z)h=(a2b−b2a)f′(z)
同除以 a2b−b2a 便完成證明。訣竅
將其參數化後代入求解。解法
令 x=cosθ 且 y=sinθ,其參數範圍為 θ∈[5π4,7π4],故所求的線積分可表達並計算如下∫Cx3+x2+x+1x4dx=∫7π45π4(sin3θ+sin2θ+sinθ+1sin4θ)cosθdθ=(ln|sinθ|−1sinθ−12sin2θ−13sin3θ)|7π45π4=0
沒有留言:
張貼留言