2020年3月27日 星期五

國立臺灣大學一百零七學年度研究所碩士班入學考試試題:應用微積分

※注意:請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。每題 $5$ 分。

  1. A parabola is drawn having focus $\left(0,2\right)$ and directrix $y=4$. The definite integral representing the arc length of that portion of the parabola on or above the $x$-axis is given by
    1. $\displaystyle\int_0^{12}\sqrt{4-x^2}dx$
    2. $\displaystyle\int_0^{2\sqrt3}\sqrt{4-x^2}dx$
    3. $\displaystyle\int_0^{2\sqrt3}\sqrt{4+x^2}dx$
    4. $\displaystyle\int_0^{12}\sqrt{4+x^2}dx$
    5. $\displaystyle\int_0^{12}\frac1{\sqrt{4-x^2}}dx$
  2. 訣竅首先根據題意寫出拋物線方程式,隨後運用曲線弧長公式表達之。
    解法焦點在 $\left(0,2\right)$ 而準線為 $y=4$ 的拋物線方程式為 $x^2=-4\left(y-3\right)=12-4y$,即 $\displaystyle y=\frac{12-x^2}4$。那麼在 $x$ 軸上方的範圍為 $y\geq0$,即 $x^2\leq12$,因此 $x\in\left[-2\sqrt3,2\sqrt3\right]$。運用曲線弧長公式可知

    $\displaystyle s=\int_{-2\sqrt3}^{2\sqrt3}\sqrt{1+y'^2\left(x\right)}dx=2\int_0^{2\sqrt3}\sqrt{1+\left(-\frac{x}2\right)^2}dx=\int_0^{2\sqrt3}\sqrt{4+x^2}dx$

    故選(C)。

  3. $\displaystyle\int e^{\frac{2+x}3}dx$.
    1. $e^{\frac{2+x}3}+C$
    2. $2e^{\frac{2+x}3}+C$
    3. $\displaystyle\frac12e^{\frac{2+x}3}+C$
    4. $\displaystyle\frac13e^{\frac{2+x}3}+C$
    5. $3e^{\frac{2+x}3}+C$
  4. 訣竅運用變數代換法可立刻求解。
    解法令 $\displaystyle u=\frac{2+x}3$,整理後求導可知 $dx=3du$,如此所求可改寫並計算如下

    $\displaystyle\int e^{\frac{2+x}3}dx=\int e^u\cdot3du=3e^u+C=3e^{\frac{2+x}3}+C$

    故選(E)。

  5. Let $\displaystyle f\left(x\right)=\frac{x^2+2x-1}{2x^3+1}$, then $f'\left(1\right)$ is
    1. $-1$
    2. $0$
    3. $1$
    4. $2$
    5. None of the above
  6. 訣竅運用微分公式求導計算即可。
    解法使用微分公式可得

    $\displaystyle f'\left(x\right)=\frac{\left(x^2+2x-1\right)'\left(2x^3+1\right)-\left(x^2+2x-1\right)\left(2x^3+1\right)'}{\left(2x^3+1\right)^2}=\frac{\left(2x+2\right)\left(2x^3+1\right)-\left(x^2+2x-1\right)\cdot6x^2}{\left(2x^3+1\right)^2}$

    取 $x=1$ 代入有

    $\displaystyle f'\left(1\right)=\frac{\left(2\cdot1+2\right)\left(2\cdot1^3+1\right)-\left(1^2+2\cdot1-1\right)\cdot6\cdot1^2}{\left(2\cdot1^3+1\right)^2}=\frac{4\cdot3-2\cdot6}{3^2}=0$

    應選(B)。

  7. Let $f\left(x\right)=\sqrt{\sec4x}$, then $f'\left(x\right)$ is
    1. $\displaystyle\frac{\tan4x}{2\sqrt{\sec4x}}$
    2. $\displaystyle\frac1{2\sqrt{\sec4x}}$
    3. $2\sqrt{\sec4x}$
    4. $2\sqrt{\sec4x}\tan4x$
    5. None of the above
  8. 訣竅運用連鎖律與基本函數的微分公式計算即可。
    解法使用連鎖律求導可知

    $\displaystyle\begin{aligned}f'\left(x\right)&=\frac{d}{dx}\left(\sec4x\right)^{\frac12}=\frac12\left(\sec4x\right)^{-\frac12}\frac{d}{dx}\sec4x\\&=\frac12\left(\sec4x\right)^{-\frac12}\cdot\sec4x\tan4x\cdot4=\frac{2\sec4x\tan4x}{\sqrt{\sec4x}}=2\sqrt{\sec4x}\tan4x\end{aligned}$

    故選(D)。

  9. Find $\displaystyle\lim_{x\to\sqrt3}5^{\frac1{3-x^2}}$.
    1. $0$
    2. Does not exist and neither $\infty$ nor $-\infty$
    3. $\infty$
    4. $-\infty$
    5. None of the above
  10. 訣竅仔細極限式中各項的趨近行為即可。
    解法由於當 $x>\sqrt3$ 時有 $3-x^2<0$,而當 $x<\sqrt3$ 時有 $3-x^2>0$,故 $\displaystyle\lim_{x\to\sqrt3^\pm}\frac1{3-x^2}=\mp\infty$,進而有 $\displaystyle\lim_{x\to\sqrt3^+}5^{\frac1{3-x^2}}=0$ 與 $\displaystyle\lim_{x\to\sqrt3^-}5^{\frac1{3-x^2}}=\infty$,故選(B)。

  11. Find the slope of the tangent line at the point $\left(1,1\right)$ on the graph of $e^{x-y}=2x^2-y^2$.
    1. $0$
    2. $-1$
    3. $1$
    4. $2$
    5. $3$
  12. 訣竅運用隱函數微分求導,隨後代入給定的座標即可求得該點的斜率。
    解法使用隱函數微分求導可得

    $\displaystyle e^{x-y}\left(1-\frac{dy}{dx}\right)=4x-2y\frac{dy}{dx}$

    取 $\left(x,y\right)=\left(1,1\right)$ 可得 $\displaystyle1-\left.\frac{dy}{dx}\right|_{\left(x,y\right)=\left(1,1\right)}=4-2\left.\frac{dy}{dx}\right|_{\left(x,y\right)=\left(1,1\right)}$,如此解得 $\displaystyle\left.\frac{dy}{dx}\right|_{\left(x,y\right)=\left(1,1\right)}=3$,故選(E)。

  13. Compute the linearization of $f\left(x\right)=\sqrt{x}e^{x-1}$ at $a=1$.
    1. $\displaystyle L\left(x\right)=\frac32x+\frac12$
    2. $\displaystyle L\left(x\right)=-\frac32x+\frac12$
    3. $\displaystyle L\left(x\right)=-\frac32x-\frac12$
    4. $\displaystyle L\left(x\right)=\frac32x-\frac12$
    5. None of the above
  14. 訣竅求導後使用點斜式獲得一階逼近多項式。
    解法求導有 $\displaystyle f'\left(x\right)=\frac1{2\sqrt{x}}e^{x-1}+\sqrt{x}e^{x-1}$,那麼在 $x=1$ 處的導數值為 $\displaystyle f'\left(1\right)=\frac32$,如此所求的一階逼近多項式為

    $\displaystyle L\left(x\right)=f\left(1\right)+f'\left(1\right)\left(x-1\right)=1+\frac32\left(x-1\right)=\frac32x-\frac12$

    故選(D)。

  15. Find $\displaystyle\lim_{x\to2}\frac{x^3-8}{x^2-4}$.
    1. $0$
    2. $1$
    3. $2$
    4. $3$
    5. None of the above
  16. 訣竅約分後求解即可;亦可使用羅必達法則。
    解法一約去因式 $x-2$ 後有

    $\displaystyle\lim_{x\to2}\frac{x^3-8}{x^2-4}=\lim_{x\to2}\frac{x^2+2x+4}{x+2}=\frac{2^2+2\cdot2+4}{2+2}=3$

    故選(D)。
    解法二使用羅必達法則可知

    $\displaystyle\lim_{x\to2}\frac{x^3-8}{x^2-4}=\lim_{x\to2}\frac{3x^2}{2x}=\frac{3\cdot2^2}{2\cdot2}=3$

    故選(D)。

  17. If the function $f\left(x\right)$ is differentiable and $f\left(x\right)=\begin{cases}ax^3-6x&\mbox{if}~x\leq1\\bx^2+4&\mbox{if}~x>1\end{cases}$, then $a=$
    1. $0$
    2. $1$
    3. $-14$
    4. $-24$
    5. $26$
  18. 訣竅由於可導函數必連續,故由連續性以及左右導數相同可獲得聯立方程式。
    解法由連續性可知

    $\displaystyle b+4=\lim_{x\to1^+}f\left(x\right)=f\left(1\right)=a-6$

    再者,由左右導數相同有

    $\displaystyle\begin{aligned}2b&=\lim_{x\to1^+}\frac{\left(bx^2+4\right)-\left(b+4\right)}{x-1}=\lim_{x\to1^+}\frac{f\left(x\right)-f\left(1\right)}{x-1}\\&=\lim_{x\to1^-}\frac{f\left(x\right)-f\left(1\right)}{x-1}=\lim_{x\to1^-}\frac{\left(ax^3-6x\right)-\left(a-6\right)}{x-1}=\lim_{x\to1^-}\left[a\left(x^2+x+1\right)-6\right]=3a-6\end{aligned}$

    因此有聯立方程式如下

    $\left\{\begin{aligned}&a-b=10\\&3a-2b=6\end{aligned}\right.$

    可解得 $a=-14$,故選(C)。

  19. Given that the function $f$ is continuous on the interval $\left[1,\infty\right)$, and that $\displaystyle\int_1^x\sqrt{f\left(t\right)}dt=\sqrt{x}$, then $\displaystyle\int_1^{\infty}f^2\left(t\right)dt=$
    1. $0$
    2. $\displaystyle\frac1{16}$
    3. $\displaystyle\frac14$
    4. $1$
    5. $\infty$
  20. 訣竅利用微積分基本定理求得函數後,計算瑕積分求解即可。
    解法運用微積分基本定理兩邊取導可知

    $\displaystyle\sqrt{f\left(x\right)}=\frac1{2\sqrt{x}}$

    取四次方有 $\displaystyle f^2\left(x\right)=\frac1{16x^2}$,從而所求的瑕積分之值為

    $\displaystyle\int_1^{\infty}f^2\left(t\right)dt=\frac1{16}\int_1^{\infty}\frac{dt}{t^2}=\left.-\frac1{16t}\right|_1^{\infty}=\frac1{16}$

    應選(B)。

  21. $\displaystyle\lim_{x\to1^+}\frac{\exp\left(x^2-1\right)}{x-1}$.
    1. $0$
    2. $1$
    3. $2$
    4. $\infty$
    5. None of the above
  22. 訣竅分析討論分子分母的趨向性。
    解法由於分母恆正且趨於零,但分子恆正但不趨於零,故所求發散至正無窮,選(D)。

  23. $f\left(x\right)=\left(x-1\right)\left(x-2\right)^2\left(x-3\right)^3$. Find the value of $x$ that maximizes $f'\left(x\right)$.
    1. $0$
    2. $1$
    3. $2$
    4. $3$
    5. None of the above
  24. 訣竅為了求一階導函數的極大值,那麼要求二階導函數為零的位置,並用三階導函數判別其特性。
    解法求一階導函數可知

    $\begin{aligned}f'\left(x\right)&=\left(x-2\right)^2\left(x-3\right)^3+2\left(x-1\right)\left(x-2\right)\left(x-3\right)^3+3\left(x-1\right)\left(x-2\right)^2\left(x-3\right)^2\\&=\left[\left(x-2\right)\left(x-3\right)+2\left(x-1\right)\left(x-3\right)+3\left(x-1\right)\left(x-2\right)\right]\left(x-2\right)\left(x-3\right)^2\\&=2\left(3x^2-11x+9\right)\left(x-2\right)\left(x-3\right)^2\end{aligned}$

    為了找出 $f'\left(x\right)$ 極大值的 $x$,我們進一步解方程式 $f''\left(x\right)=0$,即

    $\begin{aligned}f''\left(x\right)&=2\left(6x-11\right)\left(x-2\right)\left(x-3\right)^2+2\left(3x^2-11x+9\right)\left(x-3\right)^2+4\left(3x^2-11x+9\right)\left(x-2\right)\left(x-3\right)\\&=2\left(x-3\right)\left(15x^3-95x^2+195x-129\right)\end{aligned}$

    故有 $x=3$ 與另外三個不易表達的實根,然而在 $x=3$ 附近之斜率由負轉正,故達到極小值,因此以上皆非,選(E)。

    事實上,$\displaystyle\lim_{x\to\infty}f'\left(x\right)=\infty$,故 $f'\left(x\right)$ 本身便無最大值。


  25. $f\left(x\right)=x^x$. Find $f'\left(1\right)$.
    1. $0$
    2. $1$
    3. $e$
    4. $\displaystyle\frac1e$
    5. None of the above
  26. 訣竅換底後使用連鎖律求導即可。
    解法求導可知

    $\displaystyle f'\left(x\right)=\frac{d}{dx}x^x=\frac{d}{dx}e^{x\ln x}=e^{x\ln x}\cdot\frac{d}{dx}\left(x\ln x\right)=x^x\left(1+\ln x\right)$

    取 $x=1$ 代入有 $f'\left(1\right)$,故選(B)。

  27. Compute the area of the region enclosed by the graphs of the given equations: $y=e^x$, $y=e^{-x}$, and $x=\ln3$.
    1. $1$
    2. $\displaystyle\frac43$
    3. $\displaystyle\frac53$
    4. $2$
    5. None of the above
  28. 訣竅確定曲線交點得積分範圍,將上下曲線相減後取積分可求得面積。
    解法容易看出 $y=e^x$ 與 $y=e^{-x}$ 交於 $\left(0,1\right)$,因此所求面積為

    $\displaystyle A=\int_0^{\ln3}\left(e^x-e^{-x}\right)dx=\left(e^x+e^{-x}\right)\Big|_0^{\ln3}=\left(3+\frac13\right)-2=\frac43$

    選(B)。

  29. $\displaystyle F\left(x\right)=\int_0^x\left(z-3\right)^2\left(z-4\right)^3\left(z-5\right)^4e^{2z}dz$. Find the value of $x\in\left[0,6\right]$ that minimizes $F\left(x\right)$.
    1. $3$
    2. $4$
    3. $5$
    4. $6$
    5. None of the above
  30. 訣竅為了求函數的極小值,運用微積分基本定理求導後解一階導函數為零的位置。
    解法使用微積分基本定理求導有 $F'\left(x\right)=\left(x-3\right)^2\left(x-4\right)^3\left(x-5\right)^4e^{2x}$,那麼解方程式 $F'\left(x\right)=0$ 可得 $x=3,4,5$,但明顯可以注意到當 $x\in\left[0,4\right)-\left\{3\right\}$ 時 $F'\left(x\right)<0$,而當 $x\in\left(4,6\right]-\left\{5\right\}$ 時 $F'\left(x\right)>0$,從而 $F$ 在 $x=4$ 處達到極小值,選(B)。

  31. Suppose $\displaystyle\lim_{x\to0^+}f\left(x\right)=A$ and $\displaystyle\lim_{x\to0^-}f\left(x\right)$. Find $\displaystyle\lim_{x\to0^-}f\left(x^2-x\right)$.
    1. $A$
    2. $B$
    3. $A^2-B$
    4. $A^2+B$
    5. None of the above
  32. 訣竅考察所求極限中的正負性從而獲得所求。
    解法由於 $x^2-x=x\left(x-1\right)$,而當 $x<0$ 時可知 $x\left(x-1\right)>0$,故 $\displaystyle\lim_{x\to0^-}f\left(x^2-x\right)=\lim_{t\to0^+}f\left(t\right)=A$,選(A)。

  33. The integral of a constant is a constant.
    1. True
    2. False
  34. 訣竅常數函數之積分為一次函數。
    解法給定一常數函數 $f\left(x\right)=a$,那麼常數函數 $f$ 之不定積分為 $\displaystyle\int f\left(x\right)dx=ax+C$,不為常數函數,選(B)。

  35. If $f''\left(x\right)=g'\left(x\right)$, then $f'\left(x\right)=g\left(x\right)$.
    1. True
    2. False
  36. 訣竅同取不定積分時應當加上積分常數。
    解法同取不定積分應得 $f'\left(x\right)=g\left(x\right)+C$。

  37. If $f''\left(x\right)>0$ for all $x\in\left[a,b\right]$ and $b>a$, then $\max\left[f\left(a\right),f\left(b\right)\right]>f\left(z\right)$ for all $z\in\left(a,b\right)$.
    1. True
    2. False
  38. 訣竅由反證法,此時可以由連續函數的極值定理取出內部極大值,這便與題設產生衝突。
    解法假設不然,即假設存在 $z_0\in\left(a,b\right)$ 滿足 $\max\left[f\left(a\right),f\left(b\right)\right]<f\left(z_0\right)$。因為 $f$ 為連續函數且在邊界的最大值不超過內部其中一點的最大值,不妨考慮 $\displaystyle f\left(z_0\right)=\max_{\left[a,b\right]}f$,那麼容易知道 $f'\left(z_0\right)$ 且 $f''\left(z_0\right)\leq0$,這與題設衝突,故得矛盾,證明完畢。

  39. If $f''\left(x\right)<0$ for all $x\in\left[a,b\right]$ and $b>a$, then there exists $z\in\left[a,b\right]$ such that $\max\left[f\left(a\right),f\left(b\right)\right]<f\left(z\right)$.
    1. True
    2. False
  40. 訣竅此與第十九題的敘述類似當不正確,容易舉出相關的反例。
    解法考慮函數 $f\left(x\right)=-e^x$,那麼容易確認 $f''\left(x\right)=-e^x<0$,那麼在 $\left[a,b\right]=\left[0,1\right]$ 時可知 $\max\left[f\left(0\right),f\left(1\right)\right]=f\left(0\right)=-1$,但並不存在任何一個點超過邊界點,這是因為 $f$ 嚴格遞減。

沒有留言:

張貼留言