每小題 $5$ 分,請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。
- $f$ is continuously differentiable real-valued function defined on the open interval $\left(-1,4\right)$ such that $f\left(3\right)=5$ and $f'\left(x\right)\geq-1$ for all $x$. What is the greatest possible value of $f\left(0\right)$?
- $3$
- $4$
- $5$
- $8$
- None of the above.
- $g$ is a continuous real-valued function such that $\displaystyle3x^5+96=\int_c^xg\left(t\right)dt$, where $c$ is a constant. What is the value of $c$?
- $-32$
- $-2$
- $2$
- $32$
- None of the above.
- Let $g\left(x\right)=e^{2x+1}$ for all real $x$. Then $\displaystyle\lim_{x\to0}\frac{g\left(g\left(x\right)\right)-g\left(e\right)}x=$
- $2e$
- $4e^2$
- $2e^{2e+1}$
- $4e^{2e+2}$
- None of the above.
- For what positive value of $c$ does the equation $\log x=cx^4$ have exactly one real solution for $x$?
- $\left(4e\right)^{-1}$
- $4e^{-1}$
- $2e^4$
- $4e^{1/4}$
- None of the above.
- $\displaystyle\frac{d}{dx}\int_{x^3}^{x^4}e^{t^2}dt=$
- $e^{x^6}\left(e^{x^8-x^6}-1\right)$
- $e^{x^6}\left(4x^3e^{x^8-x^6}-3x^2\right)$
- $e^{x^3}\left(e^{x^4-x^3}-1\right)$
- $e^{x^3}\left(4x^3e^{x^4-x^3}-3x^2\right)$
- None of the above.
- What is the $19$th derivative of $\displaystyle\frac{x-1}{e^x}$?
- $\left(18-x\right)e^{-x}$
- $\left(19-x\right)e^{-x}$
- $\left(20-x\right)e^{-x}$
- $\left(x-19\right)e^{-x}$
- None of the above.
- If $y$ is a real-valued function such that $y'+xy=x$ and $y\left(0\right)=-1$, then $\displaystyle\lim_{x\to-\infty}y\left(x\right)=$
- $1$
- $\infty$
- $-\infty$
- $\pi/2$
- None of the above.
- If a real number $x$ is chosen at random in the interval $\left[0,3\right]$ and a real number $y$ is chosen at random in the interval $\left[0,4\right]$, what is the probability that $x<y$?
- $3/4$
- $1/2$
- $5/8$
- $5/6$
- None of the above.
- Suppose $a$ and $b$ are positive numbers. Then $\displaystyle\int_0^{\infty}\frac{e^{ax}-e^{bx}}{\left(1+e^{ax}\right)\left(1+e^{bx}\right)}dx=$
- $0$
- $1$
- $\pi/2$
- $\left(a-b\right)\log2$
- None of the above.
- Which of the following statements are true?
- We can find a constant $C$ such that $\log x\leq C\sqrt{x}$ for all positive $x$.
- We can find a constant $C$ such that $\displaystyle\sum_{k=1}^nk^2\leq Cn^2$ for all positive integer $n$.
- I only
- II only
- I and II
- None
- None of the above.
- 設 $\displaystyle f\left(x\right)=\frac{\log x}{\sqrt{x}}$,求導有 $\displaystyle f'\left(x\right)=\frac{1-\sqrt{x}\log x}{x\sqrt{x}}$。由此設定 $g\left(x\right)=1-\sqrt{x}\log x$,可以注意到連續函數 $g$ 嚴格遞減,且有 $\displaystyle\lim_{x\to0^-}g\left(x\right)=\infty$ 與 $\displaystyle\lim_{x\to\infty}g\left(x\right)=-\infty$,因此存在唯一的 $x_0\in\left(0,\infty\right)$ 使得 $g\left(x_0\right)=0$,從而 $f'\left(x_0\right)=0$,因而 $f$ 在此處達到最大值,取 $C=f\left(x_0\right)$ 便有 $\log x\leq f\left(x_0\right)\sqrt{x}=C\sqrt{x}$,證明完畢。
- 假設確實存在這樣的 $C$ 可滿足 $\displaystyle\sum_{k=1}^nk^2\leq Cn^2$。由於 $\displaystyle\sum_{k=1}^nk^2=\frac{n\left(n+1\right)\left(2n+1\right)}6$,那麼同除以 $n^2$ 可得
$\displaystyle\frac{\left(n+1\right)\left(2n+1\right)}{6n}\leq C$
然而左式當 $n$ 充分大時將趨於無窮,這給出 $\infty\leq C$,矛盾。故不可能存在這樣的 $C$。 - Let $f\left(x\right)=\mbox{arcsin}\,x$, then $f^{-1}\left(x\right)$ is
- $\sin x$, $0\leq x\leq1$.
- $\displaystyle\frac1{\sin x}$, $-1\leq x\leq1$
- $\sin x$, $\displaystyle-\frac\pi2\leq x\leq\frac\pi2$
- $\displaystyle\frac1{\cos x}$, $-1\leq x\leq1$
- $\cos x$, $0\leq x\leq\pi$
- Find $\displaystyle\int\sqrt{3x+5}dx$.
- $\displaystyle\frac13\left(3x+5\right)^{3/2}+C$
- $\displaystyle\frac29\left(3x+5\right)^{3/2}+C$
- $\displaystyle\frac29\left(3x+5\right)^{-3/2}+C$
- $3\left(3x+5\right)^{-1/2}+C$
- $3\left(3x+5\right)^{3/2}+C$
- Find $\displaystyle\lim_{x\to0}x\cot3x$.
- $3$
- $0$
- Does not exist
- $\displaystyle\frac13$
- None of the above.
- $\displaystyle\frac{d}{dx}\int_{2x}^{5x}\sqrt{2-\cos t}dt$.
- $2\sqrt{2-\cos5x}-5\sqrt{2-\cos2x}$
- $5\sqrt{2-\cos2x}-2\sqrt{2-\cos5x}$
- $2\sqrt{2-\cos2x}-5\sqrt{2-\cos2x}$
- $5\sqrt{5-\cos2x}-5\sqrt{2-\cos2x}$
- None of the above.
- The graph in the $xy$-plane represented by $x=3\sin t$ and $y=2\cos t$ is
- a line
- a parabola
- an ellipse
- a hyperbola
- a circle
- Find the area inside one loop of the curve $r=\sin2\theta$.
- $\displaystyle\frac\pi8$
- $\displaystyle\frac\pi{16}$
- $\displaystyle\frac\pi2$
- $\displaystyle\frac\pi4$
- $\pi$
- The interval of convergence of series $\displaystyle\sum_{n=1}^{\infty}\frac{\left(x+2\right)^n}{n\sqrt{n}3^n}$.
- $-3\leq x\leq3$
- $-5\leq x\leq1$
- $-5\leq x<1$
- $-3\leq x<3$
- None of the above.
- 當 $x=-5$ 時級數可寫為 $\displaystyle\sum_{n=1}^{\infty}\frac{\left(-1\right)^n}{n\sqrt{n}}$,那麼由交錯級數審歛法可知其收斂。
- 當 $x=1$ 時級數可寫為 $\displaystyle\sum_{n=1}^{\infty}\frac1{n\sqrt{n}}$,那麼由 $p$ 級數在 $p=3/2$ 時收斂可知此冪級數在此點收斂。
- The Maclaurin series of expansion of $\displaystyle\frac1{1+x^2}$ is
- $\displaystyle1-\frac{x^2}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots$
- $\displaystyle1+\frac{x^2}{2!}+\frac{x^4}{4!}+\frac{x^6}{6!}+\cdots$
- $1+x^2+x^4+x^6+\cdots$
- $1-x^2+x^4-x^6+\cdots$
- None of the above.
- Find $\displaystyle\lim_{x\to-1^-}\frac1{1+x^2}$.
- $-\infty$
- $\infty$
- $1$
- Does not exist and neither $-\infty$ nor $\infty$
- None of the above.
- $\displaystyle\int\frac{dx}{\sqrt{9-x^2}}=$
- $\sin^{-1}3x+C$
- $\displaystyle\sin^{-1}\frac{x}3+C$
- $\displaystyle\frac13\sin^{-1}3x+C$
- $\ln\left|x+\sqrt{9-x^2}\right|+C$
- $\displaystyle\frac13\ln\left|x+\sqrt{9-x^2}\right|+C$
訣竅
運用微積分基本定理求解。解法
使用微積分基本定理可知$\displaystyle f\left(0\right)=f\left(3\right)-\int_0^3f'\left(x\right)dx\leq5+\int_0^3dx=5+3=8$
故選(D)。訣竅
取特殊值代入即可求值。解法
取 $x=c$ 代入可得$\displaystyle3c^5+96=\int_c^cg\left(t\right)dt=0$
因此 $c^5+32=0$,可得 $c=-2$,應選(B)。訣竅
使用羅必達法則求解即可。解法
先計算 $g$ 的導函數為 $g'\left(x\right)=2e^{2x+1}$,於是使用羅必達法則可知$\displaystyle\lim_{x\to0}\frac{g\left(g\left(x\right)\right)-g\left(e\right)}x=\lim_{x\to0}g'\left(g\left(x\right)\right)g'\left(x\right)=g'\left(g\left(0\right)\right)g'\left(0\right)=g'\left(e\right)g'\left(0\right)=2e^{2e+1}\cdot2e=4e^{2e+2}$
故選(D)。訣竅
運用函數的單調性的技術求解。解法
考慮函數 $f\left(x\right)=cx^4-\log x$,求導有$\displaystyle f'\left(x\right)=cx^3-\frac1x$
那麼當 $f'\left(x\right)=0$ 時有 $x^4=c^{-1}$,即得 $x=c^{-1/4}$(負不合);再者,當 $x\in\left(0,c^{-1/4}\right)$ 時有 $f'\left(x\right)<0$,而當 $x\in\left(c^{-1/4},\infty\right)$ 時有 $f'\left(x\right)>0$,故 $f$ 在 $x=c^{-1/4}$ 處達到最大值。而方程要有唯一解,這表明 $f\left(c^{-1/4}\right)=0$【假若 $f\left(c^{-1/4}\right)<0$ 那麼無解;假若 $f\left(c^{-1/4}\right)>0$ 則至少兩解】,此即$\displaystyle1+\frac14\log c=0$
因此 $\log c=-4$,得 $c=e^{-4}$,從而選(E)。訣竅
運用微積分基本定理與連鎖律求解即可。解法
使用微積分基本定理與連鎖律可得$\displaystyle\frac{d}{dx}\int_{x^3}^{x^4}e^{t^2}dt=e^{\left(x^4\right)^2}\cdot\frac{d}{dx}x^4-e^{\left(x^3\right)^2}\cdot\frac{d}{dx}x^3=4x^3e^{x^8}-3x^2e^{x^6}=e^{x^6}\left(4x^3e^{x^8-x^6}-3x^2\right)$
故選(B)。訣竅
求較低階的導函數觀察其規律後利用數學歸納法證明猜測。解法
將給定的函數寫為 $f\left(x\right)=\left(x-1\right)e^{-x}$,先求前兩階導函數如下$f'\left(x\right)=e^{-x}-\left(x-1\right)e^{-x}=\left(2-x\right)e^{-x},\quad f''\left(x\right)=-e^{-x}+\left(x-2\right)e^{-x}=\left(x-3\right)e^{-x}$
那麼推測有 $f^{\left(n\right)}\left(x\right)=\left(-1\right)^n\left(n+1-x\right)e^{-x}$。由於 $n=1$ 時已經確認成立,現假設 $n=k$ 時猜測成立,那麼可以確認得知$\displaystyle f^{\left(k+1\right)}\left(x\right)=\frac{d}{dx}f^{\left(k\right)}\left(x\right)=\frac{d}{dx}\left(-1\right)^k\left(k-x\right)e^{-x}=\left(-1\right)^k\left[-e^{-x}-\left(k+1-x\right)e^{-x}\right]=\left(-1\right)^{k+1}\left(k+2-x\right)e^{-x}$
如此命題在 $n=k+1$ 時也成立,因此推測對於所有正整數皆成立。特別地,當 $n=19$ 時有$f^{\left(19\right)}\left(x\right)=-\left(20-x\right)e^{-x}=\left(x-20\right)e^{-x}$
故選(E)。訣竅
運用分離變量法或積分因子法求解微分方程。解法一
移項整理有$\displaystyle\frac{dy}{1-y}=xdx$
在 $\left[0,x\right]$ 上取積分可得$\displaystyle-\ln\left(1-y\left(x\right)\right)+\ln\left(1-y\left(0\right)\right)=\frac{x^2}2$
由 $y\left(0\right)=-1$ 可得$y\left(x\right)=1-2e^{-x^2/2}$
如此可知 $\displaystyle\lim_{x\to-\infty}y\left(x\right)=1$,故選(A)。解法二
兩邊同乘以 $e^{x^2/2}$ 可注意到$\displaystyle\left(e^{x^2/2}y\left(x\right)\right)'=e^{x^2/2}y'\left(x\right)+xe^{x^2/2}y\left(x\right)=xe^{x^2/2}$
在 $\left[0,x\right]$ 上取積分有$\displaystyle e^{x^2/2}y\left(x\right)-y\left(0\right)=e^{x^2/2}-1$
因此所求為$\displaystyle y\left(x\right)=1-2e^{-x^2/2}$
如此可知 $\displaystyle\lim_{x\to-\infty}y\left(x\right)=1$,故選(A)。訣竅
運用機率密度函數的觀點求解。解法
設 $X$ 與 $Y$ 分別代表在區間 $\left[0,3\right]$ 與 $\left[0,4\right]$ 上隨取取一實數的隨機變數,此處的隨機為均勻密度,也就是它們所對應的機率密度函數為 $\displaystyle f_X\left(x\right)=\frac13$($x\in\left[0,3\right]$) 與 $\displaystyle f_Y\left(y\right)=\frac14$($y\in\left[0,4\right]$)。那麼所求的機率為$\displaystyle\mathbb{Pr}\left(x<y\right)=\int_0^3\int_x^4f_X\left(x\right)f_Y\left(y\right)dydx=\frac1{12}\int_0^3\left(4-x\right)dx=\left.\frac1{12}\left(4x-\frac{x^2}2\right)\right|_0^3=\frac58$
故選(C)。訣竅
改寫後直接取積分即可。解法
所求可以改寫並計算如下$\displaystyle\begin{aligned}\int_0^{\infty}\frac{e^{ax}-e^{bx}}{\left(1+e^{ax}\right)\left(1+e^{bx}\right)}&=\int_0^{\infty}\left(\frac1{1+e^{bx}}-\frac1{1+e^{ax}}\right)dx=\int_0^{\infty}\left(\frac{e^{-bx}}{1+e^{-bx}}-\frac{e^{-ax}}{1+e^{-ax}}\right)dx\\&=\left.-\frac1b\ln\left(1+e^{-bx}\right)+\frac1a\ln\left(1+e^{-ax}\right)\right|_0^{\infty}=\left(\frac1b-\frac1a\right)\ln2=\frac{\left(a-b\right)\ln2}{ab}\end{aligned}$
故選(E)。訣竅
由函數的增長特性可推知答案,隨後運用單調性確認之。解法
訣竅
按照反函數的定義考慮即可。解法
首先注意到 $\displaystyle\mbox{arcsin}:\left[-1,1\right]\to\left[-\frac\pi2,\frac\pi2\right]$,因此其所對應的反函數為 $\displaystyle\sin:\left[-\frac\pi2,\frac\pi2\right]\to\left[-1,1\right]$,應選(C)。訣竅
運用變數變換的概念求不定積分。解法
直接計算可得$\displaystyle\int\sqrt{3x+5}dx=\frac13\int\left(3x+5\right)^{1/2}d\left(3x+5\right)=\frac13\cdot\frac23\left(3x+5\right)^{3/2}+C=\frac29\left(3x+5\right)^{3/2}+C$
應選(B)。訣竅
改寫後使用羅必達法則即可求解。解法
改寫後使用羅必達法則如下$\displaystyle\lim_{x\to0}x\cot3x=\lim_{x\to0}\frac{x}{\tan3x}=\lim_{x\to0}\frac1{3\sec^23x}=\frac13$
故選(D)。訣竅
使用微積分基本定理與連鎖律求解即可。解法
使用微積分基本定理與連鎖律計算如下$\displaystyle\frac{d}{dx}\int_{2x}^{5x}\sqrt{2-\cos t}dt=\sqrt{2-\cos5x}\cdot5-\sqrt{2-\cos2x}\cdot2=5\sqrt{2-\cos5x}-2\sqrt{2-\cos2x}$
應選(E)。訣竅
運用三角恆等式來尋求參數式所滿足的關係式。解法
利用 $\sin^2t+\cos^2t=1$,可以注意到參數式滿足$\displaystyle\frac{x^2}9+\frac{y^2}4=\sin^2t+\cos^2t=1$
故此參數式描繪出一橢圓,應選(C)。訣竅
試圖描繪此參數曲線後使用極座標下的面積公式求解。解法
可描繪圖形如下由於僅需考慮其中一圈的面積,可考慮 $\displaystyle\theta\in\left[0,\frac\pi2\right]$,如此所求為$\displaystyle A=\frac12\int_0^{\frac\pi2}r^2\left(\theta\right)d\theta=\frac12\int_0^{\frac\pi2}\sin^22\theta d\theta=\frac14\int_0^{\frac\pi2}\left(1-\cos4\theta\right)d\theta=\left.\frac14\left(\theta-\frac{\sin4\theta}4\right)\right|_0^{\frac\pi2}=\frac\pi8$
故選(A)。訣竅
首先計算收斂半徑,隨後確認端點之值。解法
使用比值審歛法的概念求收斂半徑如下$\displaystyle R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\frac{\left(n+1\right)\sqrt{n+1}3^{n+1}}{n\sqrt{n}3^n}=3$
因此級數至少在 $\left|x+2\right|<3$ 時收斂,即至少在 $-5<x<1$ 時收斂。現在檢查端點如下訣竅
運用無窮等比級數公式。解法
使用無窮等比級數公式,其中公比為 $-x^2$ 可得$\displaystyle\frac1{1+x^2}=\sum_{n=0}^{\infty}\left(-x^2\right)^n=\sum_{n=0}^{\infty}\left(-1\right)^nx^{2n}=1-x^2+x^4-x^6+\cdots~~~\mbox{for}~x\in\left(-1,1\right)$
故選(D)。訣竅
此為連續函數,故可直接代入求極限。解法
此為連續函數,故所求極限為 $\displaystyle\lim_{x\to1^-}\frac1{1+x^2}=\frac12$,故選(E)。訣竅
運用熟悉的反導函數公式即可。解法
使用反導函數公式可知$\displaystyle\int\frac{dx}{\sqrt{a^2-x^2}}=\sin^{-1}\frac{x}a+C$
取 $a=3$ 可知應選(B)。
沒有留言:
張貼留言