2020年5月14日 星期四

國立臺灣大學一百零九學年度研究所碩士班入學考試試題:應用微積分

※注意:請用 2B 鉛筆作答於答案卡,並先詳閱答案卡上之「畫記說明」。

1. Multiple Choice Questions ($50\%$)

  1. What is the coefficient of $y^3x^6$ in $\left(1+x+y\right)^5\left(1+x\right)^7$?
    1. $350$
    2. $840$
    3. $70$
    4. $490$
    5. None of the above.
  2. 訣竅有效率的展開求解。
    解法作如下的二項式展開可知

    $\begin{aligned}\left(1+x+y\right)^5\left(1+x\right)^7&=\left(y+\left(1+x\right)\right)^5\left(1+x\right)^7\\&=\left[y^5+5y^4\left(1+x\right)+10y^3\left(1+x\right)^2+10y^2\left(1+x\right)^3+5y\left(1+x\right)^4+\left(1+x\right)^5\right]\left(1+x\right)^7\end{aligned}$

    只關注具有 $y^3$ 的那項為 $10y^3\left(1+x\right)^9$,而具有 $x^6$ 的係數為 $C_6^9=84$,因此所求的項為 $840x^6y^3$,故選(B)。

  3. The volume of a ball of radius $R$ in $6$-dimensional Euclidean space is $\displaystyle\frac{\pi^3}6R^6$. What is the volume of a ball of radius $R$ in $7$-dimensional Euclidean space?
    1. $\displaystyle\frac{8\pi^3}{105}R^7$
    2. $\displaystyle\frac{32\pi^3}{105}R^7$
    3. $\displaystyle\frac{16\pi^3}{105}R^7$
    4. $\displaystyle\frac{4\pi^3}{105}R^7$
    5. None of the above.
  4. 訣竅根據旋轉體體積的概念求解。
    解法按照題設,在六維空間中的球體 $B_R\left(0\right)=\left\{\left(x_1,\dots,x_6\right)\in\mathbb{R}^6:x_1^2+\cdots+x_6^2\leq R^2\right\}$ 的體積為 $\displaystyle\frac{\pi^3}6R^6$。那麼七維空間的球體

    $E=\left\{\left(x_1,\cdots,x_6,x_7\right)\in\mathbb{R}^7\mid-\sqrt{R^2-x_7^2}\leq\sqrt{x_1^2+\cdots+x_6^2}\leq\sqrt{R^2-x_7^2},-R\leq x_7\leq R\right\}$

    可以運用旋轉體體積的概念列式並計算如下

    $\displaystyle\begin{aligned}V&=\int_{-R}^R\int_{B_{\sqrt{R^2-x_7^2}}\left(0\right)}1dx_7=\int_{-R}^R\frac{\pi^3}6\sqrt{R^2-x_7^2}^6dx_7=\frac{\pi^3}3\int_0^R\left(R^2-x_7^2\right)^3dx_7\\&=\frac{\pi^3}3\int_0^R\left(R^6-3R^4x_7^2+3R^2x_7^4-x_7^6\right)dx_7=\left.\frac{\pi^3}3\left(R^6x_7-R^4x_7^3+\frac{3R^2x_7^5}5-\frac{x_7^7}7\right)\right|_0^R\\&=\frac{\pi^3}3\cdot\frac{16}{35}R^7=\frac{16\pi^3}{105}R^7\end{aligned}$

    故選(C)。

  5. The volume of a ball of radius $R$ in $6$-dimensional Euclidean space is $\displaystyle\frac{\pi^3}6R^6$. What is the surface area of this ball?
    1. $\displaystyle\frac{\pi^3}6R^5$
    2. $\displaystyle\frac{\pi^3}3R^5$
    3. $\displaystyle\frac{\pi^3}2R^5$
    4. $\pi^3R^5$
    5. None of the above.
  6. 訣竅運用殼層表面累積的概念與微積分基本定理求解。
    解法設六維空間中半徑為 $r$ 的球面表面積為 $S\left(r\right)$,那麼由體積公式可知

    $\displaystyle\int_0^RS\left(r\right)dr=\frac{\pi^3}6R^6$

    那麼由微積分基本定理可知 $S\left(R\right)=\pi^3R^5$,因此選(D)。

  7. Which of the following is closest to the value of $\displaystyle\int_0^1\sqrt{1+\frac1{3x}}dx$?
    1. $1$
    2. $1.2$
    3. $1.6$
    4. $2$
    5. The integral doesn't converge.
  8. 訣竅運用變數變換改寫瑕積分至較容易估算的形式。
    解法令 $\displaystyle u=\sqrt{1+\frac1{3x}}$,那麼
    • 當 $x=1$ 時有 $\displaystyle u=\frac2{\sqrt3}$;
    • 當 $x\to0^+$ 時有 $\displaystyle u\to\infty$;
    • 平方整理有 $\displaystyle x=\frac1{3\left(u^2-1\right)}=\frac1{6\left(u-1\right)}-\frac1{6\left(u+1\right)}$,求導可得 $\displaystyle dx=\left(-\frac1{6\left(u-1\right)^2}+\frac1{6\left(u+1\right)^2}\right)du$。
    據此所求的瑕積分可改寫並計算如下

    $\displaystyle\begin{aligned}\int_0^1\sqrt{1+\frac1{3x}}dx&=\int_{\infty}^{\frac2{\sqrt3}}u\cdot\left(\frac1{6\left(u+1\right)^2}-\frac1{6\left(u-1\right)^2}\right)du\\&=\left.\left(\frac{u}{6\left(u+1\right)}-\frac{u}{6\left(u-1\right)}\right)\right|_{\frac2{\sqrt3}}^{\infty}-\int_{\frac2{\sqrt3}}^{\infty}\left(\frac1{6\left(u+1\right)}-\frac1{6\left(u-1\right)}\right)du\\&=-\frac{\displaystyle\frac2{\sqrt3}}{\displaystyle6\left(\frac2{\sqrt3}+1\right)}+\frac{\displaystyle\frac2{\sqrt3}}{\displaystyle6\left(\frac2{\sqrt3}-1\right)}-\left.\left(\frac16\ln\frac{u+1}{u-1}\right)\right|_{\frac2{\sqrt3}}^{\infty}\\&=\frac{2\sqrt3}3+\frac16\ln\frac{2+\sqrt3}{2-\sqrt3}=\frac{2\sqrt3}3+\frac13\ln\left(2+\sqrt3\right)\end{aligned}$

    使用 $\sqrt3\approx1.732$ 可知

    $\displaystyle\int_0^1\sqrt{1+\frac1{3x}}dx\approx\frac{2\cdot1.732}3+\frac13\ln\left(2+1.732\right)=\frac{3.464}3+\frac13\ln3.732\approx1.155+0.438=1.593$

    故選(C)。

  9. $\displaystyle\int_{e^{-3}}^{e^{-2}}\frac1{x\ln x}dx=$
    1. $\displaystyle\frac32$
    2. $\displaystyle\frac23$
    3. $\displaystyle\ln\frac23$
    4. $\displaystyle\ln\frac32$
    5. None of the above.
  10. 訣竅由變數變換的概念計算即可。
    解法令 $u=\ln x$,那麼
    • 當 $x=e^{-3}$ 時有 $u=-3$;
    • 當 $x=e^{-2}$ 時有 $u=-2$;
    • 取指數有 $x=e^u$,求導則有 $dx=e^udu$。
    據此所求的定積分可改寫並計算如下

    $\displaystyle\int_{e^{-3}}^{e^{-2}}\frac1{x\ln x}dx=\int_{-3}^{-2}\frac1{e^uu}\cdot e^udu=\left.\ln\left|u\right|\right|_{-3}^{-2}=\ln2-\ln3=\ln\frac23$

    應選(C)。

  11. How many roots of $x^4-4x^2-8x+12$ lie in the range $\left[-2,2\right]$?
    1. $0$
    2. $1$
    3. $2$
    4. $3$
    5. None of the above.
  12. 訣竅利用函數的的遞增遞減與中間值定理求解即可。
    解法設 $f\left(x\right)=x^4-4x^2-8x+12$,求一階與二階導函數有 $f'\left(x\right)=4x^3-8x-8=4\left(x^3-2x-2\right)$,$f''\left(x\right)=12x^2-8$。那麼在 $\displaystyle x=\pm\frac{\sqrt6}3$ 處有凹向性的改變,此即 $f'$ 在這兩處發生極值,而 $\displaystyle f'\left(-\frac{\sqrt6}3\right)=-8-\frac{16\sqrt6}9<0$ 且 $\displaystyle f'\left(\frac{\sqrt6}3\right)=-8+\frac{16\sqrt6}9<0$,這表明 $f'$ 僅有一實根,記此實根為 $r_0$,此表明 $f$ 在該處達到絕對極小值。從而只要 $f\left(r_0\right)<0$ 時 $f$ 在 $\left(-\infty,r_0\right)$ 有一實根,而在 $\left(r_0,\infty\right)$ 上有另一實根。

    現直接由中間值定理檢驗可以注意到 $f\left(1\right)=1$、$f\left(2\right)=-4$ 且 $f\left(3\right)=33$,故 $f$ 分別在 $\left(1,2\right)$ 與 $\left(2,3\right)$ 中各有一實根。

    那麼在 $f$ 在 $\left[-2,2\right]$ 中恰有一實根,選(B)。

  13. Assume $f:\mathbb{R}\to\mathbb{R}$ is smooth. $\displaystyle\lim_{h\to0}\frac{f\left(x+4h\right)-2f\left(x\right)+f\left(x-4h\right)}{h^2}=$
    1. $0$
    2. $8f'\left(x\right)$
    3. $8f''\left(x\right)$
    4. $16f''\left(x\right)$
    5. None of the above.
  14. 訣竅運用羅必達法則即可。
    解法使用羅必達法則可知

    $\displaystyle\lim_{h\to0}\frac{f\left(x+4h\right)-2f\left(x\right)+f\left(x-4h\right)}{h^2}=\lim_{h\to0}\frac{4f'\left(x+4h\right)-4f'\left(x-4h\right)}{2h}=\lim_{h\to0}\frac{16f''\left(x+4h\right)+16f''\left(x-4h\right)}2=16f''\left(x\right)$

    故選(D)。

  15. From the following list, choose the smallest value of $n$ for which the following limit exists for all $r\geq n$.

    $\displaystyle\lim_{\left(x,y\right)\to\left(0,0\right)}\frac{x^r}{\left|x\right|^2+\left|y\right|^2}$

    1. $1$
    2. $1.5$
    3. $2$
    4. $2.5$
    5. None of the above.
  16. 訣竅留意所求問題在 $x<0$ 時無意義。
    解法注意到當 $x<0$ 而 $r$ 非整數時問題無意義,故應選(E)。

    假若給定的極限如下

    $\displaystyle\lim_{\left(x,y\right)\to\left(0,0\right)}\frac{\left|x\right|^r}{\left|x\right|^2+\left|y\right|^2}$

    那麼可以發現在 $r>2$ 時極限存在且為零,但當 $r=2$ 時可透過沿兩軸趨於原點的極限不同而知極限不存在。此處,我們說明在 $r>2$ 的情形:觀察下面的不等式

    $\displaystyle0\leq\frac{\left|x\right|^r}{\left|x\right|^2+\left|y\right|^2}=\frac{x^2}{x^2+y^2}\cdot\left|x\right|^{r-2}\leq\left|x\right|^{r-2}$

    由於 $\displaystyle\lim_{\left(x,y\right)\to\left(0,0\right)}\left|x\right|^{r-2}=0$,故由夾擠定理可知給定的極限為零,故自選項中應選(D)。


  17. Find the maximum of $x^2y$ on the curve $x^2+2y^2=6$.
    1. $3$
    2. $4$
    3. $5$
    4. $6$
    5. None of the above.
  18. 訣竅運用算術幾何不等式;或化約為單變數函數在給定區間上求極值;亦可使用拉格朗日乘子法求解。
    解法一利用算術幾何不等式可知

    $\displaystyle2=\frac{\displaystyle\frac{x^2}2+\frac{x^2}2+2y^2}3\geq\sqrt[3]{\frac{x^2}2\cdot\frac{x^2}2\cdot2y^2}=\frac{\sqrt[3]{x^4y^2}}{\sqrt[3]2}$

    立方後整理有 $x^4y^2\leq16$,故 $x^2y\leq4$,故最大值為 $4$,其中等號成立條件為 $x=\pm2$,$y=1$。因此選(B)。
    解法二由條件可知 $x^2=6-2y^2$,其中 $y\in\left[-\sqrt3,\sqrt3\right]$。那麼欲求極值的函數可表達為 $y$ 的函數為 $f\left(y\right)=6y-2y^3$。那麼可能發生極值的位置滿足方程式 $f'\left(y\right)=6-6y^2=0$,可得 $y=\pm1$。將這些位置與邊界值代入檢查可知

    $f\left(\pm2,\pm1\right)=\pm4$,  $f\left(0,\pm\sqrt3\right)=0$

    因此最大值為 $4$,選(B)。
    解法三設定拉格朗日乘子函數 $F$ 如下

    $F\left(x,y,\lambda\right)=x^2y+\lambda\left(x^2+2y^2-6\right)$

    據此解聯立方程組

    $\left\{\begin{aligned}&F_x\left(x,y,\lambda\right)=2xy+2x\lambda=0\\&F_y\left(x,y,\lambda\right)=x^2+4y\lambda=0\\&F_\lambda\left(x,y,\lambda\right)=x^2+2y^2-6=0\end{aligned}\right.$

    由第一式可知 $x=0$ 或 $\lambda=-y$。
    • 若 $x=0$,那麼由第三式可知 $y=\pm\sqrt3$;
    • 若 $\lambda=-y$,那麼由第二式可知 $x^2=4y^2$,代入第三式便有 $6y^2=6$,故 $y=\pm1$,而 $x=\pm2$,共計有四種組合。
    餘下代入計算的過程同解法二。

  19. Assume $f:\mathbb{R}\to\mathbb{R}$ is smooth with $f\left(1\right)=1$ and $f'\left(1\right)=2$. Find $\displaystyle\frac{d}{dx}\left(\frac{f\left(e^{2x-2}\right)}{xf\left(x\right)}\right)$ at $x=1$.
    1. $0$
    2. $e^2-3$
    3. $e-3$
    4. $1$
    5. None of the above.
  20. 訣竅運用微分公式仔細計算即可。
    解法使用微分公式求導可知

    $\displaystyle\frac{d}{dx}\left(\frac{f\left(e^{2x-2}\right)}{xf\left(x\right)}\right)=\frac{2xe^{2x-2}f'\left(e^{2x-2}\right)f\left(x\right)-f\left(e^{2x-2}\right)\left[f\left(x\right)+xf'\left(x\right)\right]}{x^2f^2\left(x\right)}$

    那麼取 $x=1$ 代入可得

    $\displaystyle\frac{2f'\left(1\right)f\left(1\right)-f\left(1\right)\left[f\left(1\right)+f'\left(1\right)\right]}{f^2\left(1\right)}=1$

    故選(D)。

※注意:請於試卷內之「非選擇題作答區」標明題號依序作答。

2. Answer the following questions:

  1. $\displaystyle\lim_{x\to\infty}\frac{\left(2\pi\right)^{1/2}x^{x-1/2}e^{-x}}{\displaystyle\int_0^{\infty}y^{x-1}e^{-y}dy}=$     ($10\%$)
  2. 訣竅注意到分母為 $\Gamma$ 函數,而分子為 Stirling 公式。
    解法首先改寫分母的積分式並運用變數變換 $y=\left(x-1\right)u$,可注意到

    $\displaystyle\int_0^{\infty}y^{x-1}e^{-y}dy=\int_0^{\infty}e^{\left(x-1\right)\ln y-y}dy=e^{\left(x-1\right)\ln\left(x-1\right)}\left(x-1\right)\int_0^{\infty}e^{\left(x-1\right)\left(\ln u-u\right)}du$

    拉普拉斯方法,我們可以注意到

    $\displaystyle\lim_{x\to\infty}\frac{\displaystyle\sqrt{\frac{2\pi}{x-1}}e^{-\left(x-1\right)}}{\displaystyle\int_0^{\infty}e^{\left(x-1\right)\left(\ln u-u\right)}du}=1$

    因此將前兩式結合可知

    $\displaystyle\lim_{x\to\infty}\frac{\left(x-1\right)^x\left(2\pi\right)^{1/2}\left(x-1\right)^{-1/2}e^{-x}e}{\displaystyle\int_0^{\infty}y^{x-1}e^{-y}dy}=1$

    又觀察到 $\displaystyle\lim_{x\to\infty}\frac{\left(x-1\right)^{x-1/2}}{x^{x-1/2}}=\frac1e$。至此可知所求的極限為 $1$。

  3. $\displaystyle\int_0^1\frac{41!}{x!\left(40-x\right)!}y^{x+2}\left(1-y\right)^{40-x}dy=$     ($10\%$)
  4. 訣竅參考九十四學年度應用微積分,第十三題之解法中的一部分。
    解法承訣竅,我們使用公式

    $\displaystyle\int_0^1y^{n-1}\left(1-y\right)^{m-1}dy=\frac{\left(n-1\right)!\left(m-1\right)!}{\left(m+m-1\right)!}$

    那麼所求為

    $\displaystyle\frac{41!}{x!\left(40-x\right)!}\cdot\frac{\left(x+2\right)!\left(40-x\right)!}{41!}=\left(x+2\right)\left(x+1\right)$


  5. $\displaystyle\int_{-\infty}^{\infty}\frac1{\sqrt{2\pi}\sigma}\left(x-\mu\right)^{2n}e^{-\frac12\left(\frac{x-\mu}{\sigma}\right)^2}dx=$      where $\mu>0$ and $\sigma>0$ ($10\%$)
  6. 訣竅運用變數變換簡化問題後歸納求解即可。
    解法令 $\displaystyle u=\frac{x-\mu}{\sqrt2\sigma}$,那麼 $\displaystyle du=\frac{dx}{\sqrt2\sigma}$,如此所求的瑕積分可改寫為

    $\displaystyle\frac1{\sqrt\pi}\int_{-\infty}^{\infty}\left(\sqrt2\sigma u\right)^{2n}e^{-u^2}du=\frac{2^n\sigma^{2n}}{\sqrt\pi}\int_{-\infty}^{\infty}u^{2n}e^{-u^2}du$

    容易數學歸納式地計算如下

    $\displaystyle\begin{aligned}\frac{2^n\sigma^{2n}}{\sqrt\pi}\int_{-\infty}^{\infty}u^{2n}e^{-u^2}du&=\frac{\sigma^{2n}}{\sqrt\pi}\cdot2^{n-1}\left(2n-1\right)\int_{-\infty}^{\infty}u^{2n-2}e^{-u^2}du\\&=\frac{\sigma^{2n}}{\sqrt\pi}\cdot2^{n-2}\left(2n-1\right)\left(2n-3\right)\int_{-\infty}^{\infty}u^{2n-4}e^{-u^2}du\\&=\cdots\\&=\frac{\sigma^{2n}}{\sqrt\pi}\cdot2^{n-n}\left(2n-1\right)\left(2n-3\right)\cdots3\cdot1\int_{-\infty}^{\infty}e^{-u^2}du\\&=\frac{\sigma^{2n}}{\sqrt\pi}\left(2n-1\right)\left(2n-3\right)\cdots3\cdot1\cdot\sqrt\pi\\&=\sigma^{2n}\left(2n-1\right)!!\end{aligned}$


  7. $\displaystyle\int_0^{\infty}\frac1{\displaystyle\int_0^{\infty}y^{\alpha-1}e^{-y}dy}x^{-2}\left(\beta x\right)^{\alpha}e^{-\beta x}dx=$      where $\alpha>1$ ($10\%$)
  8. 訣竅注意到分母為 $\Gamma$ 函數,而分子近乎是 $\Gamma$ 函數,故為此進行適當的改寫即可。
    解法注意到所求可以先寫為

    $\displaystyle\int_0^{\infty}\frac1{\displaystyle\int_0^{\infty}y^{\alpha-1}e^{-y}dy}x^{-2}\left(\beta x\right)^{\alpha}e^{-\beta x}dx=\beta\left(\int_0^{\infty}y^{\alpha-1}e^{-y}dy\right)^{-1}\int_0^{\infty}\left(\beta x\right)^{\alpha-2}e^{-\beta x}d\left(\beta x\right)=\frac{\beta\left(\alpha-2\right)!}{\left(\alpha-1\right)!}=\frac{\beta}{\alpha-1}$


  9. $\displaystyle\int_0^1x^{r+\alpha-1}\left(1-x\right)^{s+\beta-1}\frac{\displaystyle\int_0^{\infty}y^{\alpha+\beta-1}e^{-y}dy}{\displaystyle\int_0^{\infty}z^{\alpha-1}e^{-z}dz\times\int_0^{\infty}t^{\beta-1}e^{-t}dt}dx=$     ($10\%$)
  10. 訣竅利用 $\Gamma$ 函數與第二題的訣竅來計算。
    解法所求可直接計算如下

    $\displaystyle\frac{\left(r+\alpha-1\right)!\left(s+\beta-1\right)!}{\left(r+s+\alpha+\beta-1\right)!}\cdot\frac{\left(\alpha+\beta-1\right)!}{\left(\alpha-1\right)!\left(\beta-1\right)!}$

沒有留言:

張貼留言