(答案請寫於答案卷上)
需列計算過程,否則不予計分
填充計算題(總計 $10$ 題,每題 $10$ 分)
- Two sequences of positive integers $\left\{a_n\right\}$ and $\left\{b_n\right\}$ are defined recursively by taking $a_1=b_1=1$ and equating rational and irrational parts in the equation
$a_n+b_n\sqrt2=\left(a_{n-1}+b_{n-1}\sqrt2\right)^2~\mbox{for}~n\geq2.$
Find the value of $a_n^2-2b_n^2=$ ($10$ points) - Let $a_n=n^n\Big/n!$. Find the value of $\displaystyle\lim_{n\to\infty}\frac{n}{\left(n!\right)^{1/n}}=$ ($10$ points)
- Find the value of $\displaystyle\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n+1}}{n}=$ ($10$ points)
- Is the product of $\displaystyle\sum_{n=0}^{\infty}\frac{\left(-1\right)^{n+1}}{\sqrt{n+1}}$ with itself a divergent series? Show your work, otherwise, no credit is given. ($10$ points)
- Evaluate the value of $\displaystyle\int_1^{\infty}\frac{\log x}{x^{n+1}}dx=$ ($10$ points)
- Let $f\left(x\right)$ be a differentiable function for $x\geq0$ and $f\left(0\right)=0$. If $\displaystyle\int_0^x\sqrt{1+f'\left(t\right)^2}dt=\left(1+2x\right)^{\frac32}$. Then $f\left(x\right)=$ ($10$ points)
- The volume generated by revolving the curve $y=\cos x$, $\displaystyle x\in\left[0,\frac\pi2\right]$ around $x$-axis is ($10$ points)
- Determine the interval of $t$ such that $\displaystyle\int_1^{\infty}\frac{\ln x}{x^t}dx$ is convergent. Also, the associated value of $\displaystyle\int_1^{\infty}\frac{\ln x}{x^t}dx$ is ($10$ points)
- Evaluate the value of $\displaystyle\int_1^{\frac\pi2}\left(\sin x\right)^3\left(\cos x\right)^{28}dx=$ ($10$ points)
- The value of $\displaystyle\int_0^1\sqrt{1+\left(\frac{dy}{dx}\right)^2}dx$ where $x^{\frac23}+y^{\frac23}=1$ is ($10$ points)
訣竅
經由有理數與無理數部分的整理可確認遞迴關係。本題可於 Mathematical Analysis (Apostol 著),第四章習題第四題發現。解法
藉由展開可知 $a_n=a_{n-1}^2+2b_{n-1}^2$ 與 $b_n=2a_{n-1}b_{n-1}$,從而有$a_n-b_n\sqrt2=\left(a_{n-1}-b_{n-1}\sqrt2\right)^2$
兩式相乘即有$a_n^2-2b_n^2=\left(a_{n-1}-2b_{n-1}\right)^2$
設 $S_n=a_n^2-2b_n^2$,那麼便有 $S_n=S_{n-1}^2$,其中 $n\geq2$,而 $S_1=a_1^2-2b_1^2=-1$,因此當 $n\geq2$ 時有 $S_n=1$,即$S_n=\begin{cases}-1,&\mbox{if}~n=1,\\1,&\mbox{if}~n\geq2.\end{cases}$
訣竅
將其考慮為無窮級數,運用比值審歛法與根式審歛法的精神可知兩者皆表收斂半徑的倒數。本題也可見 Mathematical Analysis (Apostol 著),第八章習題第五題。解法
考慮 $a_n$ 所形成的冪級數為 $\displaystyle\sum_{n=1}^{\infty}a_nx^n$。由比值審歛法求其收斂半徑之倒數如下$\displaystyle\frac1{R}=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\lim_{n\to\infty}\frac{\left(n+1\right)^{n+1}/\left(n+1\right)!}{n^n/n!}=\lim_{n\to\infty}\left(1+\frac1n\right)^n=e$
而所求之極限亦為收斂半徑之倒數,故有 $\displaystyle\lim_{n\to\infty}\frac{n}{\left(n!\right)^{1/n}}=e$。訣竅
利用經典的無窮等比級數求和公式取積分可求解。本題與 Mathematical Analysis (Apostol 著),第八章習題第十八題 b 小題相同。解法
由無窮等比級數可知$\displaystyle\frac1{1+x}=\sum_{n=0}^{\infty}\left(-x\right)^n=\sum_{n=0}^{\infty}\left(-1\right)^nx^n$
取積分後有$\displaystyle\ln\left(1+x\right)=\sum_{n=0}^{\infty}\frac{\left(-1\right)^n}{n+1}x^{n+1}=\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n+1}}{n}x^n$
取 $x=1$ 代入可得所求為 $\displaystyle\sum_{n=1}^{\infty}\frac{\left(-1\right)^{n+1}}{n}=\ln2$。訣竅
將兩級數相乘後的一般項明確的表達出來,運用發散審歛法可得出肯定的答案。本題可於 Mathematical Analysis (Apostol 著),第八章習題第三十二題 a 小題見到。解法
設 $\displaystyle a_n=b_n=\frac{\left(-1\right)^{n+1}}{\sqrt{n+1}}$,那麼乘積所得之級數為 $\displaystyle\sum_{n=0}^{\infty}c_n$,其中 $c_n$ 定義如下$\displaystyle c_n=\sum_{k=0}^na_kb_{n-k}=\sum_{k=0}^n\frac{\left(-1\right)^n}{\sqrt{k+1}\sqrt{n-k+1}}$
因此當 $n$ 為奇數時,可看出$\displaystyle\left|c_n\right|=2\sum_{k=0}^{\left(n-1\right)/2}\frac1{\sqrt{k+1}\sqrt{n-k+1}}\geq2\cdot\frac{n-1}2\cdot\frac1{\displaystyle\sqrt{\frac{n-1}2+1}\cdot\sqrt{n+1}}=\sqrt{2}\frac{n-1}{n+1}\geq\frac{\sqrt2}2~~\mbox{for}~n\geq3$
故其一般項不收斂至零,因此由發散審歛法知乘積的級數發散。訣竅
由分部積分法求解即可。本題出自 Mathematical Analysis (Apostol 著),第十章第十五題 b 小題。解法
假定 $n\in\mathbb{N}$ 且此處之 $\log$ 以 $e$ 為底數。如此所求可直接計算為$\displaystyle\int_1^{\infty}\frac{\log x}{x^{n+1}}dx=-\frac1n\int_1^{\infty}\log xdx^{-n}=\left.-\frac{x^{-n}\log x}{n}\right|_1^{\infty}+\frac1{n}\int_1^{\infty}x^{-n}\cdot\frac1xdx=\left.-\frac{x^{-n}}{n^2}\right|_1^{\infty}=\frac1{n^2}$
訣竅
由微積分基本定理求導後逐步求得所求函數。解法
應用微積分基本定理可知$\displaystyle\sqrt{1+f'^2\left(x\right)}=\frac32\left(1+2x\right)^{\frac12}\cdot2=3\left(1+2x\right)^{\frac12}$
同取平方則有 $1+f'^2\left(x\right)=9+18x$,因此 $f'^2\left(x\right)=8+18x$,因此 $f'\left(x\right)=\pm\sqrt{8+18x}$,故所求函數為$\displaystyle f\left(x\right)=f\left(0\right)+\int_0^xf'\left(s\right)ds=\pm\int_0^x\sqrt{8+18s}ds=\left.\pm\frac1{27}\left(8+18s\right)^{\frac32}\right|_0^x=\pm\frac{\left(8+18x\right)^{\frac32}-8^{\frac32}}{27}$
訣竅
運用旋轉體體積公式計算即可。解法
使用旋轉體體積公式可知$\displaystyle V=\int_0^{\frac\pi2}\pi\cos^2xdx=\frac\pi2\int_0^{\frac\pi2}\left(1+\cos2x\right)dx=\left.\frac\pi2\left(x+\frac{\sin2x}2\right)\right|_0^{\frac\pi2}=\frac{\pi^2}4$
訣竅
針對不同的 $t$ 值進行計算從而判定其歛散性。解法
當 $t=1$ 時,直接計算可知其發散:$\displaystyle\int_1^{\infty}\frac{\ln x}xdx=\left.\frac{\ln^2x}2\right|_1^{\infty}=\infty$
而當 $t\in\left(-\infty,1\right)$ 且 $x\in\left[1,\infty\right)$ 時,由於 $\displaystyle\frac{\ln x}{x^t}\geq\frac{\ln x}x$,故由比較審歛法知此時亦發散。而對於 $t\in\left(1,\infty\right)$ 的情形,我們可直接計算如下$\displaystyle\int_1^{\infty}\frac{\ln x}{x^t}dx=\frac1{1-t}\int_1^{\infty}\ln xdx^{1-t}=\left.\frac{x^{1-t}\ln x}{1-t}\right|_1^{\infty}-\frac1{1-t}\int_1^{\infty}x^{1-t}\cdot\frac1xdx=\left.-\frac{x^{1-t}}{\left(1-t\right)^2}\right|_1^{\infty}=\frac1{\left(1-t\right)^2}$
故該瑕積分僅在 $t\in\left(1,\infty\right)$ 時收斂,其值為 $\displaystyle\frac1{\left(1-t\right)^2}$。訣竅
利用拆項後可觀察出自然的變數代換法計算求解。解法
觀察可知$\displaystyle\begin{aligned}\int_1^{\frac\pi2}\left(\sin x\right)^3\left(\cos x\right)^{28}dx&=-\int_1^{\frac\pi2}\sin^2x\cos^{28}xd\cos x=\int_1^{\frac\pi2}\left(\cos^{30}x-\cos^{28}x\right)d\cos x\\&=\left.\frac{\cos^{31}x}{31}-\frac{\cos^{29}x}{29}\right|_1^{\frac\pi2}=\frac{\cos^{29}1}{29}-\frac{\cos^{31}1}{31}\end{aligned}$
訣竅
此表曲線在特定範圍的弧長,運用參數化來改寫後計算。解法
將曲線參數化為 $\left\{\begin{aligned}&x=\cos^3t\\&y=\sin^3t\end{aligned}\right.$,其中 $\displaystyle t\in\left[0,\frac\pi2\right]$,如此所求為$\displaystyle\begin{aligned}s&=\int_0^1\sqrt{1+\left(\frac{dy}{dx}\right)^2}dx=\int_0^{\frac\pi2}\sqrt{\left(\frac{dx}{dt}\right)^2+\left(\frac{dy}{dt}\right)^2}dt=\int_0^{\frac\pi2}\sqrt{\left(-3\cos^2t\sin t\right)^2+\left(3\sin^2t\cos t\right)^2}dt\\&=3\int_0^{\frac\pi2}\sin t\cos tdt=\left.\frac{3\sin^2t}2\right|_0^{\frac\pi2}=\frac32\end{aligned}$
沒有留言:
張貼留言