Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

2020年7月6日 星期一

國立臺灣大學一百零四學年度研究所碩士班入學考試試題:微積分(A)

  1. (10 points) A rectangle with corners at (x,0), (x,0), (x,y), (x,y) is inscribed in a half circle x2+y2=1 where y0. Note that rectangle is in the upper half plane. Assume we move x on the half circle, x2+y2=1, as x(t)=t2 and t goes from 0 to 1.
    1. (7 points) Find the rate of change of y(t).
    2. (3 points) Find the rate of change of the area A(t)=2x(t)y(t) of the rectangle.
  2. 訣竅根據題意獲得變量之間的關係並使用微分公式求導即可。
    解法
    1. 由於 y=1x2,故 y(t)=1(t2)2=1t4,因此所求為

      y(t)=4t321t4=2t31t4

    2. 直接求導可知

      A(t)=2x(t)y(t)+2x(t)y(t)=4t1t44t51t4


  3. (10 points)
    1. (5 points) Analyze the local extrema of the function

      f(x)=x1+x2

      on the real axes using the second derivative test.
    2. (5 points) Are there any global extrema?
  4. 訣竅利用求導找出極值候選點,隨後使用二階導函數判定其是否為局部極值;再者觀察無窮遠處的行為以瞭解是否為全域極值。
    解法
    1. 運用微分公式求導可知

      f(x)=11+x22x2(1+x2)2=1x2(1+x2)2

      為了找出局部極值,我們解方程式 f(x)=0,易得 x=±1。又進一步求二階導函數可知

      f(x)=2x(1+x2)22(1x2)2x(1+x2)3=6x+2x3(1+x2)3

      故有 f(1)=12<0f(1)=12>0,因此 fx=1 處達到極大值而在 x=1 處達到極小值。
    2. 又由前一小題的結果可以知道當 x(,1)(1,)f(x)<0 而在 x(1,1)f(x)>0,且因 lim,因此 fx=-1x=1 處分別達到全域極小值與全域極大值。

  5. (10 points) Suppose that x^2y+xz^2=5, and let w=x^3y. Express \displaystyle\left(\frac{\partial w}{\partial z}\right)_y as a function of x, y, and z, and evaluate it numerically when \left(x,y,z\right)=\left(1,1,2\right).
  6. 訣竅運用多變數連鎖律求解即可,其中應準確理解記號之意義。
    解法首先注意到題目意指將 w 視為 \left(y,z\right) 的雙變數函數,故

    \displaystyle\frac{\partial w}{\partial z}=\frac{\partial w}{\partial x}\frac{\partial x}{\partial z}=3x^2y\frac{\partial x}{\partial z}

    而利用題目原先給定的條件可知

    \displaystyle 2xy\frac{\partial x}{\partial z}+2z^2\frac{\partial x}{\partial z}+2xz=0

    即有 \displaystyle\frac{\partial x}{\partial z}=-\frac{xz}{xy+z^2},故所求為 \displaystyle\frac{\partial w}{\partial z}=-\frac{3x^3yz}{xy+z^2}

  7. (15 points) Consider the region R in the first quadrant bounded by the curves y=x^2, y=x^2/5, xy=2, and xy=4.
    1. (7 points) Compute dxdy in terms of dudv if u=x^2/y and v=xy.
    2. (8 points) Find a double integral for the area of R in uv coordinates and evaluate it.
  8. 訣竅按照 Jacobian 行列式的意義計算即可;運用變數變換求出平面上的區域面積。
    解法
    1. 按照 Jacobian 行列式的定義可計算如下

      \displaystyle\begin{aligned}dxdy&=\Big|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\Big|dudv=\Big|\begin{vmatrix}\displaystyle\frac{\partial x}{\partial u}&\displaystyle\frac{\partial x}{\partial v}\\\displaystyle\frac{\partial y}{\partial u}&\displaystyle\frac{\partial y}{\partial v}\end{vmatrix}\Big|dudv=\Big|\begin{vmatrix}\displaystyle\frac{\partial u}{\partial x}&\displaystyle\frac{\partial u}{\partial y}\\\displaystyle\frac{\partial v}{\partial x}&\displaystyle\frac{\partial v}{\partial y}\end{vmatrix}\Big|^{-1}dudv\\&=\Big|\begin{vmatrix}2x/y&-x^2/y^2\\y&x\end{vmatrix}\Big|^{-1}dudv=\frac{y}{3x^2}dudv=\frac1{3u}dudv\end{aligned}

    2. 據前一小題的結果,所求之面積為

      \displaystyle A=\iint_R1dA=\int_2^4\int_1^5\frac1{3u}dudv=\frac13\left(\int_2^4dv\right)\left(\int_1^5\frac{du}u\right)=\frac13\cdot2\cdot\ln5=\frac{2\ln5}3


  9. (15 points) Find the Lagrange multiplier equations for the point of the surface

    x^4+y^4+z^4+xy+yz+zx=6

    at which x is largest. (Do not solve.) Explain clearly how you reach your conclusion.
  10. 訣竅按照拉格朗日乘子法的概念列式即可。
    解法首先設定拉格朗日乘子函數如下

    F\left(x,y,z,\lambda\right)=x+\lambda\left(x^4+y^4+z^4+xy+yz+zx-6\right)

    據此能知需解的聯立方程組為

    \left\{\begin{aligned}&F_x\left(x,y,z,\lambda\right)=1+\lambda\left(4x^3+y+z\right)=0\\&F_y\left(x,y,z,\lambda\right)=\lambda\left(4y^3+x+z\right)=0\\&F_z\left(x,y,z,\lambda\right)=\lambda\left(4z^3+x+y\right)=0\\&F_{\lambda}\left(x,y,z,\lambda\right)=x^4+y^4+z^2+xy+yz+zx-6=0\end{aligned}\right.


  11. (10 points) Prove or disprove the following statement:

    \displaystyle\frac{x}{1+x^2}<\tan^{-1}\left(x\right)<x for all x>0.

  12. 訣竅利用函數的單調性進行證明。
    解法

    \displaystyle f\left(x\right)=\tan^{-1}\left(x\right)-\frac{x}{1+x^2},那麼可知 f\left(0\right)

    \displaystyle f'\left(x\right)=\frac1{1+x^2}-\left(\frac1{1+x^2}-\frac{2x^2}{\left(1+x^2\right)^2}\right)=\frac{2x^2}{\left(1+x^2\right)^2}>0

    f\left(0,\infty\right) 上嚴格遞增,因此對所有 x>0 恆有 f\left(x\right)>f\left(0\right)=0,即 \displaystyle\tan^{-1}\left(x\right)>\frac{x}{1+x^2},故第一個不等式證明完畢。

    現設 g\left(x\right)=x-\tan^{-1}\left(x\right),那麼求導可知

    \displaystyle g'\left(x\right)=1-\frac1{1+x^2}=\frac{x^2}{1+x^2}>0

    g\left(0,\infty\right) 上嚴格遞增,即對任何 x\in\left(0,\infty\right) 恆有 g\left(x\right)>g\left(0\right)=0,故 x>\tan^{-1}\left(x\right),第二個不等式證明完畢。


  13. (15 points)
    1. (3 points) Find the Taylor series of \ln\left(1+x\right) centered at a=0.
    2. (5 points) Determine the radius of convergence of this Taylor series.
    3. (2 points) Use the first two non-zero terms of the power series you found in (a) to approximate \ln\left(1.5\right).
    4. (5 points) Give an upper bound on the error in your approximation in (c) using Taylor's inequality.
  14. 訣竅首先由經典的無窮等比級數出發導出對數函數的泰勒級數,並由比值審歛法求出收斂半徑,也可由泰勒級數進行近似值與誤差的估算。
    解法
    1. 直接由不定積分與無窮等比級數的結論可知

      \displaystyle\ln\left(1+x\right)=\int_0^x\frac{dt}{1+t}=\int_0^x\sum_{n=0}^{\infty}\left(-t\right)^ndt=\sum_{n=0}^{\infty}\left(-1\right)^n\int_0^xt^ndt=\sum_{n=0}^{\infty}\frac{\left(-1\right)^n}{n+1}x^{n+1}

    2. 運用比值審歛法的概念可知收斂半徑為

      \displaystyle R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\left(\frac{1}{n+1}\cdot\frac{n+2}1\right)=1

    3. \ln\left(1+x\right) 的前兩階近似為 \displaystyle\ln\left(1+x\right)\approx f\left(x\right)=x-\frac{x^2}2,故

      \displaystyle\ln\left(1.5\right)\approx0.5-\frac{0.5^2}2=0.375=\frac38

    4. 由交錯級數的誤差估計可知其最大誤差為

      \displaystyle\left|\ln\left(1.5\right)-\left(0.5-\frac{0.5^2}2\right)\right|\leq\frac{0.5^3}3=\frac1{24}


  15. (15 points) The point x=\cos t, y=5+\sin t travels on a circle with center at \left(0,5\right). Revolving that circle around the x axis produces a doughnut. Find its surface area.
  16. 訣竅運用旋轉體表面積的公式計算求解即可。
    解法使用旋轉體表面積之公式,並考慮此為參數曲線,如此所求為

    \displaystyle A=\int_0^{2\pi}2\pi y\left(t\right)\sqrt{x'^2\left(t\right)+y'^2\left(t\right)}dt=2\pi\int_0^{2\pi}\left(5+\sin t\right)\cdot1dt=2\pi\cdot5\cdot2\pi=20\pi^2

沒有留言:

張貼留言