- (10 points) A rectangle with corners at (−x,0), (x,0), (x,y), (−x,y) is inscribed in a half circle x2+y2=1 where y≥0. Note that rectangle is in the upper half plane. Assume we move x on the half circle, x2+y2=1, as x(t)=t2 and t goes from 0 to 1.
- (7 points) Find the rate of change of y(t).
- (3 points) Find the rate of change of the area A(t)=2x(t)y(t) of the rectangle.
- 由於 y=√1−x2,故 y(t)=√1−(t2)2=√1−t4,因此所求為
y′(t)=−4t32√1−t4=−2t3√1−t4
- 直接求導可知
A′(t)=2x′(t)y(t)+2x(t)y′(t)=4t√1−t4−4t5√1−t4
- (10 points)
- (5 points) Analyze the local extrema of the function
f(x)=x1+x2
on the real axes using the second derivative test. - (5 points) Are there any global extrema?
- (5 points) Analyze the local extrema of the function
- 運用微分公式求導可知
f′(x)=11+x2−2x2(1+x2)2=1−x2(1+x2)2
為了找出局部極值,我們解方程式 f′(x)=0,易得 x=±1。又進一步求二階導函數可知f″(x)=−2x(1+x2)2−2(1−x2)⋅2x(1+x2)3=−6x+2x3(1+x2)3
故有 f″(1)=−12<0 且 f″(−1)=12>0,因此 f 在 x=1 處達到極大值而在 x=−1 處達到極小值。 - 又由前一小題的結果可以知道當 x∈(−∞,−1)∪(1,∞) 有 f′(x)<0 而在 x∈(−1,1) 有 f′(x)>0,且因 lim,因此 f 在 x=-1 與 x=1 處分別達到全域極小值與全域極大值。
- (10 points) Suppose that x^2y+xz^2=5, and let w=x^3y. Express \displaystyle\left(\frac{\partial w}{\partial z}\right)_y as a function of x, y, and z, and evaluate it numerically when \left(x,y,z\right)=\left(1,1,2\right).
- (15 points) Consider the region R in the first quadrant bounded by the curves y=x^2, y=x^2/5, xy=2, and xy=4.
- (7 points) Compute dxdy in terms of dudv if u=x^2/y and v=xy.
- (8 points) Find a double integral for the area of R in uv coordinates and evaluate it.
- 按照 Jacobian 行列式的定義可計算如下
\displaystyle\begin{aligned}dxdy&=\Big|\frac{\partial\left(x,y\right)}{\partial\left(u,v\right)}\Big|dudv=\Big|\begin{vmatrix}\displaystyle\frac{\partial x}{\partial u}&\displaystyle\frac{\partial x}{\partial v}\\\displaystyle\frac{\partial y}{\partial u}&\displaystyle\frac{\partial y}{\partial v}\end{vmatrix}\Big|dudv=\Big|\begin{vmatrix}\displaystyle\frac{\partial u}{\partial x}&\displaystyle\frac{\partial u}{\partial y}\\\displaystyle\frac{\partial v}{\partial x}&\displaystyle\frac{\partial v}{\partial y}\end{vmatrix}\Big|^{-1}dudv\\&=\Big|\begin{vmatrix}2x/y&-x^2/y^2\\y&x\end{vmatrix}\Big|^{-1}dudv=\frac{y}{3x^2}dudv=\frac1{3u}dudv\end{aligned}
- 據前一小題的結果,所求之面積為
\displaystyle A=\iint_R1dA=\int_2^4\int_1^5\frac1{3u}dudv=\frac13\left(\int_2^4dv\right)\left(\int_1^5\frac{du}u\right)=\frac13\cdot2\cdot\ln5=\frac{2\ln5}3
- (15 points) Find the Lagrange multiplier equations for the point of the surface
x^4+y^4+z^4+xy+yz+zx=6
at which x is largest. (Do not solve.) Explain clearly how you reach your conclusion. - (10 points) Prove or disprove the following statement:
\displaystyle\frac{x}{1+x^2}<\tan^{-1}\left(x\right)<x for all x>0.
- (15 points)
- (3 points) Find the Taylor series of \ln\left(1+x\right) centered at a=0.
- (5 points) Determine the radius of convergence of this Taylor series.
- (2 points) Use the first two non-zero terms of the power series you found in (a) to approximate \ln\left(1.5\right).
- (5 points) Give an upper bound on the error in your approximation in (c) using Taylor's inequality.
- 直接由不定積分與無窮等比級數的結論可知
\displaystyle\ln\left(1+x\right)=\int_0^x\frac{dt}{1+t}=\int_0^x\sum_{n=0}^{\infty}\left(-t\right)^ndt=\sum_{n=0}^{\infty}\left(-1\right)^n\int_0^xt^ndt=\sum_{n=0}^{\infty}\frac{\left(-1\right)^n}{n+1}x^{n+1}
- 運用比值審歛法的概念可知收斂半徑為
\displaystyle R=\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim_{n\to\infty}\left(\frac{1}{n+1}\cdot\frac{n+2}1\right)=1
- 取 \ln\left(1+x\right) 的前兩階近似為 \displaystyle\ln\left(1+x\right)\approx f\left(x\right)=x-\frac{x^2}2,故
\displaystyle\ln\left(1.5\right)\approx0.5-\frac{0.5^2}2=0.375=\frac38
- 由交錯級數的誤差估計可知其最大誤差為
\displaystyle\left|\ln\left(1.5\right)-\left(0.5-\frac{0.5^2}2\right)\right|\leq\frac{0.5^3}3=\frac1{24}
- (15 points) The point x=\cos t, y=5+\sin t travels on a circle with center at \left(0,5\right). Revolving that circle around the x axis produces a doughnut. Find its surface area.
訣竅
根據題意獲得變量之間的關係並使用微分公式求導即可。解法
訣竅
利用求導找出極值候選點,隨後使用二階導函數判定其是否為局部極值;再者觀察無窮遠處的行為以瞭解是否為全域極值。解法
訣竅
運用多變數連鎖律求解即可,其中應準確理解記號之意義。解法
首先注意到題目意指將 w 視為 \left(y,z\right) 的雙變數函數,故\displaystyle\frac{\partial w}{\partial z}=\frac{\partial w}{\partial x}\frac{\partial x}{\partial z}=3x^2y\frac{\partial x}{\partial z}
而利用題目原先給定的條件可知\displaystyle 2xy\frac{\partial x}{\partial z}+2z^2\frac{\partial x}{\partial z}+2xz=0
即有 \displaystyle\frac{\partial x}{\partial z}=-\frac{xz}{xy+z^2},故所求為 \displaystyle\frac{\partial w}{\partial z}=-\frac{3x^3yz}{xy+z^2}。訣竅
按照 Jacobian 行列式的意義計算即可;運用變數變換求出平面上的區域面積。解法
訣竅
按照拉格朗日乘子法的概念列式即可。解法
首先設定拉格朗日乘子函數如下F\left(x,y,z,\lambda\right)=x+\lambda\left(x^4+y^4+z^4+xy+yz+zx-6\right)
據此能知需解的聯立方程組為\left\{\begin{aligned}&F_x\left(x,y,z,\lambda\right)=1+\lambda\left(4x^3+y+z\right)=0\\&F_y\left(x,y,z,\lambda\right)=\lambda\left(4y^3+x+z\right)=0\\&F_z\left(x,y,z,\lambda\right)=\lambda\left(4z^3+x+y\right)=0\\&F_{\lambda}\left(x,y,z,\lambda\right)=x^4+y^4+z^2+xy+yz+zx-6=0\end{aligned}\right.
訣竅
利用函數的單調性進行證明。解法
設 \displaystyle f\left(x\right)=\tan^{-1}\left(x\right)-\frac{x}{1+x^2},那麼可知 f\left(0\right) 且
\displaystyle f'\left(x\right)=\frac1{1+x^2}-\left(\frac1{1+x^2}-\frac{2x^2}{\left(1+x^2\right)^2}\right)=\frac{2x^2}{\left(1+x^2\right)^2}>0
故 f 在 \left(0,\infty\right) 上嚴格遞增,因此對所有 x>0 恆有 f\left(x\right)>f\left(0\right)=0,即 \displaystyle\tan^{-1}\left(x\right)>\frac{x}{1+x^2},故第一個不等式證明完畢。現設 g\left(x\right)=x-\tan^{-1}\left(x\right),那麼求導可知
\displaystyle g'\left(x\right)=1-\frac1{1+x^2}=\frac{x^2}{1+x^2}>0
故 g 在 \left(0,\infty\right) 上嚴格遞增,即對任何 x\in\left(0,\infty\right) 恆有 g\left(x\right)>g\left(0\right)=0,故 x>\tan^{-1}\left(x\right),第二個不等式證明完畢。訣竅
首先由經典的無窮等比級數出發導出對數函數的泰勒級數,並由比值審歛法求出收斂半徑,也可由泰勒級數進行近似值與誤差的估算。解法
訣竅
運用旋轉體表面積的公式計算求解即可。解法
使用旋轉體表面積之公式,並考慮此為參數曲線,如此所求為\displaystyle A=\int_0^{2\pi}2\pi y\left(t\right)\sqrt{x'^2\left(t\right)+y'^2\left(t\right)}dt=2\pi\int_0^{2\pi}\left(5+\sin t\right)\cdot1dt=2\pi\cdot5\cdot2\pi=20\pi^2
沒有留言:
張貼留言