Loading [MathJax]/jax/element/mml/optable/MathOperators.js

2020年9月28日 星期一

國立臺灣大學一百零九學年度轉學生入學考試試題詳解

※注意:請於試卷上「非選擇題作答區」標明大題及小題題號,並依序作答。

Any device with computer algebra system is prohibited during the exam.

PART 1: Fill in the blanks.

  • Only answers will be graded.
  • Each answer must be clearly labeled on the answer sheet.
  • points are assigned to each blank.
    1. limx(1+3x)[x]= (1) , where [x] is the greatest integer which is less than or equal to x.
    2. limx0(cosax)11cosbx= (2) , where a,b are constants and ab0.
    3. limnni=112n1(i2n)2= (3) .
  1. 訣竅運用夾擠定理與自然指數的定義處理第一小題;第二小題需先使用換底公式,再搭配 L'Hôpital 法則求解;第三小題可轉換為 Riemann 和後取極限寫為定積分計算之。
    解法
    1. 注意到 x1<[x]x,因此有

      [(1+3x)x3]3(1+3x)1(1+3x)[x][(1+3x)x3]3.

      又由自然指數的定義可注意到

      limx[(1+3x)x3]3(1+3x)1=e3=limx[(1+3x)x3]3.

      從而由夾擠定理可知所求亦為 e3
    2. 由換底公式與指數函數的連續性並搭配 L'Hôpital 法則可知

      limx0(cosax)11cosbx=exp(limx0ln(cosax)1cosbx)=exp(limx0asinax/cosaxbsinbx)=exp(a2b2)=ea2b2.

    3. 所求可寫為 limn1nni=114(in)2。可將此視為函數 f(x)=14x2 在區間 [0,1] 上作 n 等分割的 Riemann 和,故其極限值可化為定積分並計算如下

      limnni=112n1(i2n)2=10dx4x2=sin1(x2)|10=sin112=π6.


    1. f(x)=[ln(1+x2)]x, ddxf(x)= (4) .
    2. x3y2+y3=x. At (x,y)=(0,1). d2ydx2= (5) .
    3. f(x,y,z)=xyzetdt. f= (6) .
    4. f(x,y)=sin(x2y)x2+y2 for (x,y)(0,0) and f(0,0)=0. The directional derivative of f along u=(cosθ,sinθ) at (0,0) is  (7) .
  2. 訣竅運用換底公式後使用連鎖律等微分法則可求解第一小題;使用隱函數微分求導函數的值;搭配微分積分定理並留意梯度的定義計算;運用方向導數的定義式計算求解,此題由於分段定義的情況故不可逕自化為梯度與方向的內積,需確認函數的可微性等資訊才可直接使用(而本題屬於不可使用的情形)。
    解法
    1. 透過換底可將 f 表達為 f(x)=exp[xln(ln(1+x2))],如此求導有

      f(x)=exp[xln(ln(1+x2))][ln(ln(1+x2))+x1ln(1+x2)11+x22x]=(ln(1+x2))x(2x2(1+x2)ln(1+x2)+ln(ln(1+x2))).

    2. 運用隱函數微分求導可得

      3x22ydydx+3y2dydx=1.

      (x,y)=(0,1) 代入可得 dydx|(x,y)=(0,1)=1。又進一步求導有

      6x2(dydx)22yd2ydx2+6y(dydx)2+3y2d2ydx2=0.

      因此由 (x,y)=(0,1)dydx|(x,y)=(0,1)=1 可推得 d2ydx2|(x,y)=(0,1)=4
    3. 按梯度的定義可知

      f(x,y,z)=(fx(x,y,z),fy(x,y,z),fz(x,y,z))=(yxy1exy/2,xyexy/2lnx,ez).

    4. 由方向導數的定義可知所求為

      Duf(0,0)=limh0f(hcosθ,hsinθ)f(0,0)h=limh0sin(h3cos2θsinθ)h3=cos2θsinθ.


  3. f(x)={|x|1,for 1x3(x6)24,for 3<x10.. g(x)=x0f(t)dt, for 1x10.
    1. Choose correct statement(s) about g(x):  (8) 
      1. g(x) is discontinuous at x=3.
      2. g(x) is not differentiable at x=3.
      3. g(x) is differentiable at x=0 and g(0)=1.
      4. g(x)<0 for 1x<0.
    2. The local minimum values of g(x) occur at x= (9) .
    3. The x-coordinates of points of inflection for y=g(x) are  (10) .
  4. 訣竅由函數圖形與積分的意義的概念可回答關於函數 g 的特性,隨後由球導的狀況回答局部極值的位置,並進一步求其反曲點。
    解法
    1. 由於 fx=3 處左右極限均存在但不相等,從而不定積分 gx=3 處連續但不可導,而在可導處的求導結果與 f 相同,即有: g(0)=f(0)=1 以及

      g(x)=x0f(t)dt=0x(1|t|)dt=0x(1+t)dt=xx22=12(x+1)2+12>0.

      即應選ii. 與 iii.
    2. 由於當 x3 時有 g(x)=f(x),從而解 g(x)=0 可知有 x=±1x=4x=8。又不可導的位置有 x=3,而邊界為 x=1x=10。逐步考量斜率的遞增遞減的區域可發現:函數 g(1,1) 處遞減,隨後在 (1,3) 上遞增,又於 (3,4) 上遞增,接著 (4,8) 遞減,最終於 (8,10) 上遞增。綜述可知在 x=1x=8 處有局部極值。
    3. 在除了 x=0x=3 處有 g(x)={1,for 1<x<0,1,for 0<x<3,2x12,for 3<x<10.。從而可知在 x=0x=3x=6 等處有凹向性的改變。

  5. A vertical fence 2 m high is located 1 m away from a wall. The length of the shortest ladder that can extend from the wall over the fence to a point on the ground is  (11) .
  6. 訣竅依據題意設定參數並表達出階梯的長度為該參數的函數,並透過微分求其極值。
    解法設此階梯與籬笆的距離為 x,那麼按題設可知與高牆的距離為 x+1,從而使用相似三角形可知該階梯的長度為 L(x)=(1+x1)x2+4,其中 x>0。對此求導有

    L(x)=x2x2+4+(1+x)(x2+4)1/2=x2(x2+4)1/2(x34).

    因此解 L(x)=0x=22/3,且容易注意到 x(0,22/3)L(x)<0x(22/3,)L(x)>0。故在 x=22/3 達到最小值。此時階梯長度的最小值為 (1+22/3)3/2

  7. Compute the following integrals:
    1. 02x3(x1)(x2+4)dx= (12) .
    2. dxx26x= (13) .
    3. sin1(x)dx= (14) .
  8. 訣竅由有理函數的積分技巧、三角代換法與一般的變數代換與分部積分法答題。
    解法
    1. 首先注意到被積分函數可改寫如下

      2x3(x1)(x2+4)=1/5x1+x/5x2+4+11/5x2+4,

      其中 x=1 處為瑕點。因此將給定的瑕積分分拆為兩段如下:

      02x3(x1)(x2+4)dx=102x3(x1)(x2+4)dx+1+2x3(x1)(x2+4)dx.

      然而這兩者皆發散:

      102x3(x1)(x2+4)dx=10(1/51x+x/5x2+4+11/5x2+4)dx=(15ln(1x)+110ln(x2+4)+1110tan1x2)|10=.

      類似地也有 1+2x3(x1)(x2+4)dx=,故給定的瑕積分發散。
    2. 配方有 x26x=(x3)29。令 x3=3secθ,那麼有 dx=3secθtanθdθ,如此所求的不定積分可改寫並計算如下

      dxx26x=3secθtanθdθ3tanθ=secθdθ=ln|secθ+tanθ|+C=ln|x3+x26x3|+C=ln|x3+x26x|+C.

      此處 C=Cln3
    3. u=sin1(x),如此有 x=sin2udx=2sinucosudu=sin2udu。據此所求的不定積分為

      sin1(x)dx=usin2udu=ucos2u2+12cos2udu=2ucos2usin2u4+C=u(cos2usin2u)sinucosu2+C=(12x)sin1(x)xx22+C.


    1.  (15) , where D is the region in the first quadrant that lies between the circles x^2+y^2=4 and \left(x-1\right)^2+y^2=1.
    2. The volume of the solid R lying below the plane z=3-2y and above the paraboloid z=x^2+y^2 is  (16) .
  9. 訣竅對於第一小題可運用極座標變換處理即可;第二小題則先求出其交會處,並利用底乘以高的概念列式求其體積。
    解法
    1. x=r\cos\thetay=r\sin\theta,根據積分區域可得變數範圍為 2\cos\theta\leq r\leq20\leq\theta\leq\pi/2。如此所求之重積分可改寫並計算如下

      \displaystyle\begin{aligned}\iint_Dy\,dA&=\int_0^{\pi/2}\int_{2\cos\theta}^2r\sin\theta\cdot r\,dr\,d\theta=\int_0^{\pi/2}\left.\frac{r^3\sin\theta}3\right|_{2\cos\theta}^2d\theta\\&=\frac83\int_0^{\pi/2}\left(\sin\theta-\sin\theta\cos^3\theta\right)d\theta=\left.\frac83\left(\frac{\cos^4\theta}4-\cos\theta\right)\right|_0^{\frac\pi2}=2.\end{aligned}

    2. 首先先考慮兩曲面的交線由 x^2+y^2=3-2y 所決定,此即 x^2+\left(y+1\right)^2=4,如此我們設定 D=\left\{\left(x,y\right)\in\mathbb R^2\,:\,x^2+\left(y+1\right)^2\leq4\right\}。那麼所求的體積可列式如下

      \displaystyle V=\iint_D\left[\left(3-2y\right)-\left(x^2+y^2\right)\right]dA=\iint_D\left[4-x^2-\left(y+1\right)^2\right]dA.

      那麼令 x=r\cos\thetay+1=r\sin\theta,如此變數範圍為 0\leq r\leq20\leq\theta\leq2\pi,則所求的體積可改寫並計算如下

      \displaystyle V=\int_0^{2\pi}\int_0^2\left(4-r^2\right)r\,dr\,d\theta=2\pi\left.\left(2r^2-\frac{r^4}4\right)\right|_0^2=8\pi.


    1. C is a smooth curve in the upper half plane going from \left(1,1\right) to \left(0,\sqrt2\right). \displaystyle{\bf F}\left(x,y\right)=\frac{x-3y}{x^2+y^2}{\bf i}+\frac{3x+y}{x^2+y^2}{\bf j}. Then, \displaystyle\int_C{\bf F}\cdot d{\bf r}= (17) .
    2. S is the part of the sphere x^2+y^2+z^2=9 that lies above the cone z=\sqrt{x^2+y^2} with upward orientation. \displaystyle{\bf F}\left(x,y,z\right)=\frac{x{\bf i}+y{\bf j}+z{\bf k}}{\left(x^2+y^2+z^2\right)^2}. Then, \displaystyle\iint_S{\bf F}\cdot d{\bf S}= (18) .
  10. 訣竅試圖找出位能函數並使用線積分基本定理即可;將取面參數化後直接計算即可。
    解法
    1. 若函數 f 滿足 \nabla f={\bf F},那麼由 \displaystyle f_x\left(x,y\right)=\frac{x-3y}{x^2+y^2} 可知

      \displaystyle f\left(x,y\right)=\frac12\ln\left(x^2+y^2\right)-3\tan^{-1}\frac xy+g\left(y\right).

      如此對 y 求導便有

      \displaystyle f_y\left(x,y\right)=\frac y{x^2+y^2}+3\cdot\frac x{y^2+x^2}+g'\left(y\right)=\frac{3x+y}{x^2+y^2}.

      g'\left(y\right)=0,從而 g 為常數函數。如此取位能函數為

      \displaystyle f\left(x,y\right)=\frac12\ln\left(x^2+y^2\right)-3\tan^{-1}\frac xy+C.

      因此所求為

      \displaystyle\int_C{\bf F}\cdot d{\bf r}=f\left(0,\sqrt2\right)-f\left(1,1\right)=\frac{3\pi}4.

    2. 將曲面參數化為 {\bf r}\left(\theta,\phi\right)=\left(3\cos\theta\sin\phi,3\sin\theta\sin\phi,3\cos\phi\right),其中參數範圍 0\leq\theta\leq2\pi0\leq\phi\leq\pi/4,那麼

      \displaystyle\begin{aligned}\left({\bf r}_\theta\times{\bf r}_\phi\right)d\theta\,d\phi&=\left(\left(-3\sin\theta\sin\phi,3\cos\theta\sin\phi,0\right)\times\left(3\cos\theta\cos\phi,3\sin\theta\cos\phi,-3\sin\phi\right)\right)d\theta\,d\phi\\&=\left(-9\cos\theta\sin^2\phi,-9\sin\theta\sin^2\phi,-9\sin\phi\cos\phi\right)d\theta\,d\phi\\&=-9\sin\phi\left(\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi\right)d\theta\,d\phi\end{aligned}

      表指向球心的有向面元,如此所求的曲面積分為

      \displaystyle\begin{aligned}\iint_S{\bf F}\cdot d{\bf S}&=\int_0^{\pi/4}\int_0^{2\pi}\frac{\left(3\cos\theta\sin\phi,3\sin\theta\sin\phi,3\cos\phi\right)}{9^2}\cdot9\sin\phi\left(\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi\right)d\theta\,d\phi\\&=\frac13\int_0^{\pi/4}\int_0^{2\pi}\sin\phi\,d\theta\,d\phi=\frac13\cdot2\pi\left(1-\frac{\sqrt2}2\right)=\frac{\left(2-\sqrt2\right)\pi}3.\end{aligned}


    1. \displaystyle\sum_{n=0}^{\infty}\frac{3^n}{\left(2n\right)!}= (19) .
    2. The Maclaurin series (the Taylor series at a=0) for \cos^{-1}x is  (20) .
  11. 訣竅利用經典的 Taylor 級數求給定的級數值並運用廣義二項式定理求冪級數。
    解法
    1. 首先觀察知道

      \displaystyle\frac{e^x+e^{-x}}2=\frac12\left(\sum_{n=0}^\infty\frac{x^n}{n!}+\sum_{n=0}^\infty\frac{\left(-1\right)^nx^n}{n!}\right)=\sum_{n=0}^\infty\frac{x^{2n}}{\left(2n\right)!}.

      因此取 x=\sqrt3 可得

      \displaystyle\sum_{n=0}^\infty\frac{3^n}{\left(2n\right)!}=\frac{e^{\sqrt3}+e^{-\sqrt3}}2=\cosh\left(\sqrt3\right).

    2. 首先回憶起 \displaystyle\cos^{-1}x=\frac\pi2-\sin^{-1}x,又

      \displaystyle\begin{aligned}\sin^{-1}x&=\int_0^x\frac{dt}{\sqrt{1-t^2}}=\int_0^x\left(1-t^2\right)^{-1/2}dt=\int_0^x\sum_{n=0}^{\infty}{-1/2\choose n}\left(-t^2\right)^ndt\\&=\int_0^x\sum_{n=0}^\infty\frac{\left(2n\right)!}{2^{2n}\left(n!\right)^2}t^{2n}dt=\sum_{n=0}^\infty\frac{\left(2n\right)!}{2^{2n}\left(n!\right)^2\left(2n+1\right)}x^{2n+1}.\end{aligned}

      因此所求的冪級數為

      \displaystyle\cos^{-1}x=\frac\pi2-\sum_{n=0}^\infty\frac{\left(2n\right)!}{2^{2n}\left(n!\right)^2\left(2n+1\right)}x^{2n+1}.

PART 2:

  • Solve the following problems. You need to write down complete arguments.
  • 10 points are assigned to each problem.
  1. Find the equation of the curve on the xy-plane that passes through \left(3,1\right) such that for any point P on the curve, the midpoint of the tangent line at P that lies in the first quadrant is P itself.
  2. 訣竅設定參數曲線並按題意考慮切線在兩軸交點的中點列出方程式。
    解法設所求的曲線參數式為 \left(x\left(t\right),y\left(t\right)\right),那麼若 P=\left(x_0,y_0\right)=\left(x\left(t_0\right),y\left(t_0\right)\right),則在該點的切線方程式為

    \displaystyle y-y_0=\frac{y'\left(t_0\right)}{x'\left(t_0\right)}\left(x-x_0\right).

    此時兩軸上的交點為

    \displaystyle\left(0,y_0-x_0\frac{y'\left(t_0\right)}{x'\left(t_0\right)}\right),\qquad\left(x_0-y_0\frac{x'\left(t_0\right)}{y'\left(t_0\right)},0\right).

    由中點關係得關係式

    \displaystyle x_0-y_0\frac{x'\left(t_0\right)}{y'\left(t_0\right)}=2x_0,\quad y_0-x_0\frac{y'\left(t_0\right)}{x'\left(t_0\right)}=2y_0.

    由於 t_0 的任意性可知 \displaystyle\frac{x'\left(t\right)}{y'\left(t\right)}=-\frac{x\left(t\right)}{y\left(t\right)},或寫為 \displaystyle\frac{dx}x+\frac{dy}y=0,因此積分得 \ln\left|xy\right|=C,從而有 xy=e^C=C'。再者又因通過 \left(3,1\right),故此曲線為 xy=3

  3. f\left(x,y\right) is a differentiable function. On the curve \displaystyle\tan^{-1}\left(xy\right)+y=2+\frac\pi4, f obtains local maximum at \displaystyle\left(x,y\right)=\left(\frac12,2\right). Suppose that \displaystyle f_x\left(\frac12,2\right)=2.
    1. Find \displaystyle\nabla f\left(\frac12,2\right).
    2. Assume that on another curve \displaystyle\tan^{-1}\left(xy\right)+y=1.9+\frac\pi4, f obtains local maximum at \left(x_0,y_0\right) which is near \displaystyle\left(\frac12,2\right). Use linear approximation to estimate \displaystyle f\left(x_0,y_0\right)-f\left(\frac12,2\right).
  4. 訣竅由 Lagrange 乘子法的概念推理。
    解法
    1. 設函數 \displaystyle g\left(x,y\right)=\tan^{-1}\left(xy\right)+y-2-\frac\pi4,則限制條件為 g\left(x,y\right)=0。如此由 Lagrange 乘子法的概念可知極值發生的位置滿足條件

      \displaystyle\left(2,f_y\left(\frac12,2\right)\right)=\left(f_x\left(\frac12,2\right),f_y\left(\frac12,2\right)\right)=\nabla f\left(\frac12,2\right)\parallel\nabla g\left(\frac12,2\right)=\left(g_x\left(\frac12,2\right),g_y\left(\frac12,2\right)\right).

      又計算函數 g 的梯度有

      \displaystyle\nabla g\left(x,y\right)=\left(\frac y{1+\left(xy\right)^2},\frac x{1+\left(xy\right)^2}+1\right).

      \displaystyle \left(x,y\right)=\left(\frac12,2\right) 代入便有 \displaystyle\nabla g\left(\frac12,2\right)=\left(1,\frac54\right),故知 \displaystyle f_y\left(\frac12,2\right)=\frac52,從而 \displaystyle\nabla f\left(\frac12,2\right)=\left(2,\frac52\right)
    2. 運用一階逼近可推知

      \displaystyle\begin{aligned}f\left(x_0,y_0\right)-f\left(\frac12,2\right)&\approx\nabla f\left(\frac12,2\right)\cdot\left(x_0-\frac12,y_0-2\right)=2\nabla g\left(\frac12,2\right)\cdot\left(x_0-\frac12,y_0-2\right)\\&\approx2\left[g\left(x_0,y_0\right)-g\left(\frac12,2\right)\right]=2\cdot\left(-0.1\right)=-0.2.\end{aligned}

沒有留言:

張貼留言