※注意:請於試卷上「非選擇題作答區」標明大題及小題題號,並依序作答。
Any device with computer algebra system is prohibited during the exam.
PART 1: Fill in the blanks.
- Only answers will be graded.
- Each answer must be clearly labeled on the answer sheet.
- points are assigned to each blank.
- limx→∞(1+3x)[x]= (1) , where [x] is the greatest integer which is less than or equal to x.
- limx→0(cosax)11−cosbx= (2) , where a,b are constants and ab≠0.
- limn→∞n∑i=112n√1−(i2n)2= (3) .
- 注意到 x−1<[x]≤x,因此有
[(1+3x)x3]3(1+3x)−1≤(1+3x)[x]≤[(1+3x)x3]3.
又由自然指數的定義可注意到limx→∞[(1+3x)x3]3(1+3x)−1=e3=limx→∞[(1+3x)x3]3.
從而由夾擠定理可知所求亦為 e3。 - 由換底公式與指數函數的連續性並搭配 L'Hôpital 法則可知
limx→0(cosax)11−cosbx=exp(limx→0ln(cosax)1−cosbx)=exp(limx→0−asinax/cosaxbsinbx)=exp(−a2b2)=e−a2b2.
- 所求可寫為 limn→∞1nn∑i=11√4−(in)2。可將此視為函數 f(x)=1√4−x2 在區間 [0,1] 上作 n 等分割的 Riemann 和,故其極限值可化為定積分並計算如下
limn→∞n∑i=112n√1−(i2n)2=∫10dx√4−x2=sin−1(x2)|10=sin−112=π6.
- f(x)=[ln(1+x2)]x, ddxf(x)= (4) .
- x3−y2+y3=x. At (x,y)=(0,1). d2ydx2= (5) .
- f(x,y,z)=∫xyze√tdt. ∇f= (6) .
- f(x,y)=sin(x2y)x2+y2 for (x,y)≠(0,0) and f(0,0)=0. The directional derivative of f along u=(cosθ,sinθ) at (0,0) is (7) .
- 透過換底可將 f 表達為 f(x)=exp[xln(ln(1+x2))],如此求導有
f′(x)=exp[xln(ln(1+x2))]⋅[ln(ln(1+x2))+x⋅1ln(1+x2)⋅11+x2⋅2x]=(ln(1+x2))x(2x2(1+x2)ln(1+x2)+ln(ln(1+x2))).
- 運用隱函數微分求導可得
3x2−2ydydx+3y2dydx=1.
取 (x,y)=(0,1) 代入可得 dydx|(x,y)=(0,1)=1。又進一步求導有6x−2(dydx)2−2yd2ydx2+6y(dydx)2+3y2d2ydx2=0.
因此由 (x,y)=(0,1) 與 dydx|(x,y)=(0,1)=1 可推得 d2ydx2|(x,y)=(0,1)=−4。 - 按梯度的定義可知
∇f(x,y,z)=(fx(x,y,z),fy(x,y,z),fz(x,y,z))=(yxy−1exy/2,xyexy/2lnx,−e√z).
- 由方向導數的定義可知所求為
Duf(0,0)=limh→0f(hcosθ,hsinθ)−f(0,0)h=limh→0sin(h3cos2θsinθ)h3=cos2θsinθ.
- f(x)={|x|−1,for −1≤x≤3(x−6)2−4,for 3<x≤10.. g(x)=∫x0f(t)dt, for −1≤x≤10.
- Choose correct statement(s) about g(x): (8)
- g(x) is discontinuous at x=3.
- g(x) is not differentiable at x=3.
- g(x) is differentiable at x=0 and g′(0)=−1.
- g(x)<0 for −1≤x<0.
- The local minimum values of g(x) occur at x= (9) .
- The x-coordinates of points of inflection for y=g(x) are (10) .
- Choose correct statement(s) about g(x): (8)
- 由於 f 在 x=3 處左右極限均存在但不相等,從而不定積分 g 在 x=3 處連續但不可導,而在可導處的求導結果與 f 相同,即有: g′(0)=f(0)=−1 以及
g(x)=∫x0f(t)dt=∫0x(1−|t|)dt=∫0x(1+t)dt=−x−x22=−12(x+1)2+12>0.
即應選ii. 與 iii. - 由於當 x≠3 時有 g′(x)=f(x),從而解 g′(x)=0 可知有 x=±1、x=4 與 x=8。又不可導的位置有 x=3,而邊界為 x=−1 與 x=10。逐步考量斜率的遞增遞減的區域可發現:函數 g 在 (−1,1) 處遞減,隨後在 (1,3) 上遞增,又於 (3,4) 上遞增,接著 (4,8) 遞減,最終於 (8,10) 上遞增。綜述可知在 x=1、x=8 處有局部極值。
- 在除了 x=0 與 x=3 處有 g″(x)={−1,for −1<x<0,1,for 0<x<3,2x−12,for 3<x<10.。從而可知在 x=0、x=3 與 x=6 等處有凹向性的改變。
- A vertical fence 2 m high is located 1 m away from a wall. The length of the shortest ladder that can extend from the wall over the fence to a point on the ground is (11) .
- Compute the following integrals:
- ∫∞02x−3(x−1)(x2+4)dx= (12) .
- ∫dx√x2−6x= (13) .
- ∫sin−1(√x)dx= (14) .
- 首先注意到被積分函數可改寫如下
2x−3(x−1)(x2+4)=−1/5x−1+x/5x2+4+11/5x2+4,
其中 x=1 處為瑕點。因此將給定的瑕積分分拆為兩段如下:∫∞02x−3(x−1)(x2+4)dx=∫1−02x−3(x−1)(x2+4)dx+∫∞1+2x−3(x−1)(x2+4)dx.
然而這兩者皆發散:∫1−02x−3(x−1)(x2+4)dx=∫1−0(1/51−x+x/5x2+4+11/5x2+4)dx=(−15ln(1−x)+110ln(x2+4)+1110tan−1x2)|1−0=∞.
類似地也有 ∫∞1+2x−3(x−1)(x2+4)dx=−∞,故給定的瑕積分發散。 - 配方有 x2−6x=(x−3)2−9。令 x−3=3secθ,那麼有 dx=3secθtanθdθ,如此所求的不定積分可改寫並計算如下
∫dx√x2−6x=∫3secθtanθdθ3tanθ=∫secθdθ=ln|secθ+tanθ|+C=ln|x−3+√x2−6x3|+C=ln|x−3+√x2−6x|+C′.
此處 C′=C−ln3。 - 令 u=sin−1(√x),如此有 x=sin2u 與 dx=2sinucosudu=sin2udu。據此所求的不定積分為
∫sin−1(√x)dx=∫usin2udu=−ucos2u2+12∫cos2udu=−2ucos2u−sin2u4+C=−u(cos2u−sin2u)−sinucosu2+C=−(1−2x)sin−1(√x)−√x−x22+C.
- ∬ (15) , where D is the region in the first quadrant that lies between the circles x^2+y^2=4 and \left(x-1\right)^2+y^2=1.
- The volume of the solid R lying below the plane z=3-2y and above the paraboloid z=x^2+y^2 is (16) .
- 令 x=r\cos\theta、y=r\sin\theta,根據積分區域可得變數範圍為 2\cos\theta\leq r\leq2、0\leq\theta\leq\pi/2。如此所求之重積分可改寫並計算如下
\displaystyle\begin{aligned}\iint_Dy\,dA&=\int_0^{\pi/2}\int_{2\cos\theta}^2r\sin\theta\cdot r\,dr\,d\theta=\int_0^{\pi/2}\left.\frac{r^3\sin\theta}3\right|_{2\cos\theta}^2d\theta\\&=\frac83\int_0^{\pi/2}\left(\sin\theta-\sin\theta\cos^3\theta\right)d\theta=\left.\frac83\left(\frac{\cos^4\theta}4-\cos\theta\right)\right|_0^{\frac\pi2}=2.\end{aligned}
- 首先先考慮兩曲面的交線由 x^2+y^2=3-2y 所決定,此即 x^2+\left(y+1\right)^2=4,如此我們設定 D=\left\{\left(x,y\right)\in\mathbb R^2\,:\,x^2+\left(y+1\right)^2\leq4\right\}。那麼所求的體積可列式如下
\displaystyle V=\iint_D\left[\left(3-2y\right)-\left(x^2+y^2\right)\right]dA=\iint_D\left[4-x^2-\left(y+1\right)^2\right]dA.
那麼令 x=r\cos\theta、y+1=r\sin\theta,如此變數範圍為 0\leq r\leq2、0\leq\theta\leq2\pi,則所求的體積可改寫並計算如下\displaystyle V=\int_0^{2\pi}\int_0^2\left(4-r^2\right)r\,dr\,d\theta=2\pi\left.\left(2r^2-\frac{r^4}4\right)\right|_0^2=8\pi.
- C is a smooth curve in the upper half plane going from \left(1,1\right) to \left(0,\sqrt2\right). \displaystyle{\bf F}\left(x,y\right)=\frac{x-3y}{x^2+y^2}{\bf i}+\frac{3x+y}{x^2+y^2}{\bf j}. Then, \displaystyle\int_C{\bf F}\cdot d{\bf r}= (17) .
- S is the part of the sphere x^2+y^2+z^2=9 that lies above the cone z=\sqrt{x^2+y^2} with upward orientation. \displaystyle{\bf F}\left(x,y,z\right)=\frac{x{\bf i}+y{\bf j}+z{\bf k}}{\left(x^2+y^2+z^2\right)^2}. Then, \displaystyle\iint_S{\bf F}\cdot d{\bf S}= (18) .
- 若函數 f 滿足 \nabla f={\bf F},那麼由 \displaystyle f_x\left(x,y\right)=\frac{x-3y}{x^2+y^2} 可知
\displaystyle f\left(x,y\right)=\frac12\ln\left(x^2+y^2\right)-3\tan^{-1}\frac xy+g\left(y\right).
如此對 y 求導便有\displaystyle f_y\left(x,y\right)=\frac y{x^2+y^2}+3\cdot\frac x{y^2+x^2}+g'\left(y\right)=\frac{3x+y}{x^2+y^2}.
故 g'\left(y\right)=0,從而 g 為常數函數。如此取位能函數為\displaystyle f\left(x,y\right)=\frac12\ln\left(x^2+y^2\right)-3\tan^{-1}\frac xy+C.
因此所求為\displaystyle\int_C{\bf F}\cdot d{\bf r}=f\left(0,\sqrt2\right)-f\left(1,1\right)=\frac{3\pi}4.
- 將曲面參數化為 {\bf r}\left(\theta,\phi\right)=\left(3\cos\theta\sin\phi,3\sin\theta\sin\phi,3\cos\phi\right),其中參數範圍 0\leq\theta\leq2\pi、0\leq\phi\leq\pi/4,那麼
\displaystyle\begin{aligned}\left({\bf r}_\theta\times{\bf r}_\phi\right)d\theta\,d\phi&=\left(\left(-3\sin\theta\sin\phi,3\cos\theta\sin\phi,0\right)\times\left(3\cos\theta\cos\phi,3\sin\theta\cos\phi,-3\sin\phi\right)\right)d\theta\,d\phi\\&=\left(-9\cos\theta\sin^2\phi,-9\sin\theta\sin^2\phi,-9\sin\phi\cos\phi\right)d\theta\,d\phi\\&=-9\sin\phi\left(\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi\right)d\theta\,d\phi\end{aligned}
表指向球心的有向面元,如此所求的曲面積分為\displaystyle\begin{aligned}\iint_S{\bf F}\cdot d{\bf S}&=\int_0^{\pi/4}\int_0^{2\pi}\frac{\left(3\cos\theta\sin\phi,3\sin\theta\sin\phi,3\cos\phi\right)}{9^2}\cdot9\sin\phi\left(\cos\theta\sin\phi,\sin\theta\sin\phi,\cos\phi\right)d\theta\,d\phi\\&=\frac13\int_0^{\pi/4}\int_0^{2\pi}\sin\phi\,d\theta\,d\phi=\frac13\cdot2\pi\left(1-\frac{\sqrt2}2\right)=\frac{\left(2-\sqrt2\right)\pi}3.\end{aligned}
- \displaystyle\sum_{n=0}^{\infty}\frac{3^n}{\left(2n\right)!}= (19) .
- The Maclaurin series (the Taylor series at a=0) for \cos^{-1}x is (20) .
- 首先觀察知道
\displaystyle\frac{e^x+e^{-x}}2=\frac12\left(\sum_{n=0}^\infty\frac{x^n}{n!}+\sum_{n=0}^\infty\frac{\left(-1\right)^nx^n}{n!}\right)=\sum_{n=0}^\infty\frac{x^{2n}}{\left(2n\right)!}.
因此取 x=\sqrt3 可得\displaystyle\sum_{n=0}^\infty\frac{3^n}{\left(2n\right)!}=\frac{e^{\sqrt3}+e^{-\sqrt3}}2=\cosh\left(\sqrt3\right).
- 首先回憶起 \displaystyle\cos^{-1}x=\frac\pi2-\sin^{-1}x,又
\displaystyle\begin{aligned}\sin^{-1}x&=\int_0^x\frac{dt}{\sqrt{1-t^2}}=\int_0^x\left(1-t^2\right)^{-1/2}dt=\int_0^x\sum_{n=0}^{\infty}{-1/2\choose n}\left(-t^2\right)^ndt\\&=\int_0^x\sum_{n=0}^\infty\frac{\left(2n\right)!}{2^{2n}\left(n!\right)^2}t^{2n}dt=\sum_{n=0}^\infty\frac{\left(2n\right)!}{2^{2n}\left(n!\right)^2\left(2n+1\right)}x^{2n+1}.\end{aligned}
因此所求的冪級數為\displaystyle\cos^{-1}x=\frac\pi2-\sum_{n=0}^\infty\frac{\left(2n\right)!}{2^{2n}\left(n!\right)^2\left(2n+1\right)}x^{2n+1}.
訣竅
運用夾擠定理與自然指數的定義處理第一小題;第二小題需先使用換底公式,再搭配 L'Hôpital 法則求解;第三小題可轉換為 Riemann 和後取極限寫為定積分計算之。解法
訣竅
運用換底公式後使用連鎖律等微分法則可求解第一小題;使用隱函數微分求導函數的值;搭配微分積分定理並留意梯度的定義計算;運用方向導數的定義式計算求解,此題由於分段定義的情況故不可逕自化為梯度與方向的內積,需確認函數的可微性等資訊才可直接使用(而本題屬於不可使用的情形)。解法
訣竅
由函數圖形與積分的意義的概念可回答關於函數 g 的特性,隨後由球導的狀況回答局部極值的位置,並進一步求其反曲點。解法
訣竅
依據題意設定參數並表達出階梯的長度為該參數的函數,並透過微分求其極值。解法
設此階梯與籬笆的距離為 x,那麼按題設可知與高牆的距離為 x+1,從而使用相似三角形可知該階梯的長度為 L(x)=(1+x−1)√x2+4,其中 x>0。對此求導有L′(x)=−x−2√x2+4+(1+x)(x2+4)−1/2=x−2(x2+4)−1/2(x3−4).
因此解 L′(x)=0 有 x=22/3,且容易注意到 x∈(0,22/3) 有 L′(x)<0 而 x∈(22/3,∞) 有 L′(x)>0。故在 x=22/3 達到最小值。此時階梯長度的最小值為 (1+22/3)3/2。訣竅
由有理函數的積分技巧、三角代換法與一般的變數代換與分部積分法答題。解法
訣竅
對於第一小題可運用極座標變換處理即可;第二小題則先求出其交會處,並利用底乘以高的概念列式求其體積。解法
訣竅
試圖找出位能函數並使用線積分基本定理即可;將取面參數化後直接計算即可。解法
訣竅
利用經典的 Taylor 級數求給定的級數值並運用廣義二項式定理求冪級數。解法
PART 2:
- Solve the following problems. You need to write down complete arguments.
- 10 points are assigned to each problem.
- Find the equation of the curve on the xy-plane that passes through \left(3,1\right) such that for any point P on the curve, the midpoint of the tangent line at P that lies in the first quadrant is P itself.
- f\left(x,y\right) is a differentiable function. On the curve \displaystyle\tan^{-1}\left(xy\right)+y=2+\frac\pi4, f obtains local maximum at \displaystyle\left(x,y\right)=\left(\frac12,2\right). Suppose that \displaystyle f_x\left(\frac12,2\right)=2.
- Find \displaystyle\nabla f\left(\frac12,2\right).
- Assume that on another curve \displaystyle\tan^{-1}\left(xy\right)+y=1.9+\frac\pi4, f obtains local maximum at \left(x_0,y_0\right) which is near \displaystyle\left(\frac12,2\right). Use linear approximation to estimate \displaystyle f\left(x_0,y_0\right)-f\left(\frac12,2\right).
- 設函數 \displaystyle g\left(x,y\right)=\tan^{-1}\left(xy\right)+y-2-\frac\pi4,則限制條件為 g\left(x,y\right)=0。如此由 Lagrange 乘子法的概念可知極值發生的位置滿足條件
\displaystyle\left(2,f_y\left(\frac12,2\right)\right)=\left(f_x\left(\frac12,2\right),f_y\left(\frac12,2\right)\right)=\nabla f\left(\frac12,2\right)\parallel\nabla g\left(\frac12,2\right)=\left(g_x\left(\frac12,2\right),g_y\left(\frac12,2\right)\right).
又計算函數 g 的梯度有\displaystyle\nabla g\left(x,y\right)=\left(\frac y{1+\left(xy\right)^2},\frac x{1+\left(xy\right)^2}+1\right).
取 \displaystyle \left(x,y\right)=\left(\frac12,2\right) 代入便有 \displaystyle\nabla g\left(\frac12,2\right)=\left(1,\frac54\right),故知 \displaystyle f_y\left(\frac12,2\right)=\frac52,從而 \displaystyle\nabla f\left(\frac12,2\right)=\left(2,\frac52\right)。 - 運用一階逼近可推知
\displaystyle\begin{aligned}f\left(x_0,y_0\right)-f\left(\frac12,2\right)&\approx\nabla f\left(\frac12,2\right)\cdot\left(x_0-\frac12,y_0-2\right)=2\nabla g\left(\frac12,2\right)\cdot\left(x_0-\frac12,y_0-2\right)\\&\approx2\left[g\left(x_0,y_0\right)-g\left(\frac12,2\right)\right]=2\cdot\left(-0.1\right)=-0.2.\end{aligned}
訣竅
設定參數曲線並按題意考慮切線在兩軸交點的中點列出方程式。解法
設所求的曲線參數式為 \left(x\left(t\right),y\left(t\right)\right),那麼若 P=\left(x_0,y_0\right)=\left(x\left(t_0\right),y\left(t_0\right)\right),則在該點的切線方程式為\displaystyle y-y_0=\frac{y'\left(t_0\right)}{x'\left(t_0\right)}\left(x-x_0\right).
此時兩軸上的交點為\displaystyle\left(0,y_0-x_0\frac{y'\left(t_0\right)}{x'\left(t_0\right)}\right),\qquad\left(x_0-y_0\frac{x'\left(t_0\right)}{y'\left(t_0\right)},0\right).
由中點關係得關係式\displaystyle x_0-y_0\frac{x'\left(t_0\right)}{y'\left(t_0\right)}=2x_0,\quad y_0-x_0\frac{y'\left(t_0\right)}{x'\left(t_0\right)}=2y_0.
由於 t_0 的任意性可知 \displaystyle\frac{x'\left(t\right)}{y'\left(t\right)}=-\frac{x\left(t\right)}{y\left(t\right)},或寫為 \displaystyle\frac{dx}x+\frac{dy}y=0,因此積分得 \ln\left|xy\right|=C,從而有 xy=e^C=C'。再者又因通過 \left(3,1\right),故此曲線為 xy=3。
沒有留言:
張貼留言